IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v274y2016icp292-305.html
   My bibliography  Save this article

A hybrid PSO-GA algorithm for constrained optimization problems

Author

Listed:
  • Garg, Harish

Abstract

The main objective of this paper is to present a hybrid technique named as a PSO-GA for solving the constrained optimization problems. In this algorithm, particle swarm optimization (PSO) operates in the direction of improving the vector while the genetic algorithm (GA) has been used for modifying the decision vectors using genetic operators. The balance between the exploration and exploitation abilities have been further improved by incorporating the genetic operators, namely, crossover and mutation in PSO algorithm. The constraints defined in the problem are handled with the help of the parameter-free penalty function. The experimental results of constrained optimization problems are reported and compared with the typical approaches exist in the literature. As shown, the solutions obtained by the proposed approach are superior to those of existing best solutions reported in the literature. Furthermore, experimental results indicate that the proposed approach may yield better solutions to engineering problems than those obtained by using current algorithms.

Suggested Citation

  • Garg, Harish, 2016. "A hybrid PSO-GA algorithm for constrained optimization problems," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 292-305.
  • Handle: RePEc:eee:apmaco:v:274:y:2016:i:c:p:292-305
    DOI: 10.1016/j.amc.2015.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315014630
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Omran, Mahamed G.H. & Salman, Ayed, 2009. "Constrained optimization using CODEQ," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 662-668.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Ruxin & Wang, Yongli & Liu, Chang & Hu, Peng & Li, Yanchao & Li, Hao & Yuan, Chi, 2020. "Selfish herd optimizer with levy-flight distribution strategy for global optimization problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    2. Amarjeet Singh & Kusum Deep, 2017. "Hybridizing gravitational search algorithm with real coded genetic algorithms for structural engineering design problem," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 505-536, September.
    3. Tung L. Dang & Thi H. H. Huynh & Manh T. Nguyen, 2021. "Media attention and firm value: International evidence," International Review of Finance, International Review of Finance Ltd., vol. 21(3), pages 865-894, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:274:y:2016:i:c:p:292-305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.