IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v197y2023i2d10.1007_s10957-023-02210-7.html
   My bibliography  Save this article

New Hybrid Perturbed Projected Gradient and Simulated Annealing Algorithms for Global Optimization

Author

Listed:
  • Yassin Belkourchia

    (Mohammed V University in Rabat)

  • Mohamed Zeriab Es-Sadek

    (Mohammed V University in Rabat)

  • Lahcen Azrar

    (Mohammed V University in Rabat
    King Abdulaziz University)

Abstract

The main objective of this works is to present an efficient hybrid optimization approach using a new coupling technique for solving constrained engineering design problems. This hybrid is based on the simulated annealing algorithm with the projected gradient and its stochastic perturbation. The proposed hybrid is combined with corrected techniques in order to correct the solutions out of domain and send them to the domain’s border. The proposed algorithm is tested and evaluated on several benchmark functions, as well as on the basis of some engineering design problems. The obtained results are well compared with typical approaches existing in the literature. The solutions obtained by the proposed hybrid are more accurate than those given by other known methods and the performance and efficiency of the proposed algorithm are demonstrated.

Suggested Citation

  • Yassin Belkourchia & Mohamed Zeriab Es-Sadek & Lahcen Azrar, 2023. "New Hybrid Perturbed Projected Gradient and Simulated Annealing Algorithms for Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 438-475, May.
  • Handle: RePEc:spr:joptap:v:197:y:2023:i:2:d:10.1007_s10957-023-02210-7
    DOI: 10.1007/s10957-023-02210-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-023-02210-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-023-02210-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gai-Ge Wang & Lihong Guo & Amir Hossein Gandomi & Amir Hossein Alavi & Hong Duan, 2013. "Simulated Annealing-Based Krill Herd Algorithm for Global Optimization," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-11, June.
    2. Garg, Harish, 2016. "A hybrid PSO-GA algorithm for constrained optimization problems," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 292-305.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gheouany, Saad & Ouadi, Hamid & El Bakali, Saida, 2024. "Optimal active and reactive energy management for a smart microgrid system under the Moroccan grid pricing code," Energy, Elsevier, vol. 306(C).
    2. Touqeer Ahmed Jumani & Mohd Wazir Mustafa & Nawaf N. Hamadneh & Samer H. Atawneh & Madihah Md. Rasid & Nayyar Hussain Mirjat & Muhammad Akram Bhayo & Ilyas Khan, 2020. "Computational Intelligence-Based Optimization Methods for Power Quality and Dynamic Response Enhancement of ac Microgrids," Energies, MDPI, vol. 13(16), pages 1-22, August.
    3. Li, Chao & Zhai, Rongrong & Yang, Yongping & Patchigolla, Kumar & Oakey, John E. & Turner, Peter, 2019. "Annual performance analysis and optimization of a solar tower aided coal-fired power plant," Applied Energy, Elsevier, vol. 237(C), pages 440-456.
    4. Brayan A. Atoccsa & David W. Puma & Daygord Mendoza & Estefany Urday & Cristhian Ronceros & Modesto T. Palma, 2024. "Optimization of Ampacity in High-Voltage Underground Cables with Thermal Backfill Using Dynamic PSO and Adaptive Strategies," Energies, MDPI, vol. 17(5), pages 1-19, February.
    5. Luo, Qifang & Yang, Xiao & Zhou, Yongquan, 2019. "Nature-inspired approach: An enhanced moth swarm algorithm for global optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 57-92.
    6. Yan, Zheping & Zhang, Jinzhong & Zeng, Jia & Tang, Jialing, 2021. "Nature-inspired approach: An enhanced whale optimization algorithm for global optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 17-46.
    7. Máximo Méndez & Mariano Frutos & Fabio Miguel & Ricardo Aguasca-Colomo, 2020. "TOPSIS Decision on Approximate Pareto Fronts by Using Evolutionary Algorithms: Application to an Engineering Design Problem," Mathematics, MDPI, vol. 8(11), pages 1-27, November.
    8. Kandidayeni, M. & Macias, A. & Khalatbarisoltani, A. & Boulon, L. & Kelouwani, S., 2019. "Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms," Energy, Elsevier, vol. 183(C), pages 912-925.
    9. Aniruddha Samanta & Kajla Basu, 2019. "Multi-objective reliability redundancy allocation problem considering two types of common cause failures," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(3), pages 369-383, June.
    10. Chen, Shuixia & Wang, Jian-qiang & Zhang, Hong-yu, 2019. "A hybrid PSO-SVM model based on clustering algorithm for short-term atmospheric pollutant concentration forecasting," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 41-54.
    11. Gülnur Yildizdan & Ömer Kaan Baykan, 2020. "A New Hybrid BA_ABC Algorithm for Global Optimization Problems," Mathematics, MDPI, vol. 8(10), pages 1-36, October.
    12. Mohit Agarwal & Gur Mauj Saran Srivastava, 2018. "Genetic Algorithm-Enabled Particle Swarm Optimization (PSOGA)-Based Task Scheduling in Cloud Computing Environment," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1237-1267, July.
    13. Gao, Renbo & Wu, Fei & Zou, Quanle & Chen, Jie, 2022. "Optimal dispatching of wind-PV-mine pumped storage power station: A case study in Lingxin Coal Mine in Ningxia Province, China," Energy, Elsevier, vol. 243(C).
    14. Gurwinder Singh & Amarinder Singh, 2021. "Solving fixed-charge transportation problem using a modified particle swarm optimization algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(6), pages 1073-1086, December.
    15. Huang, Yuming & Ge, Bingfeng & Hipel, Keith W. & Fang, Liping & Zhao, Bin & Yang, Kewei, 2023. "Solving the inverse graph model for conflict resolution using a hybrid metaheuristic algorithm," European Journal of Operational Research, Elsevier, vol. 305(2), pages 806-819.
    16. Javaid Ali & Muhammad Saeed & Muhammad Farhan Tabassam & Shaukat Iqbal, 2019. "Controlled showering optimization algorithm: an intelligent tool for decision making in global optimization," Computational and Mathematical Organization Theory, Springer, vol. 25(2), pages 132-164, June.
    17. Chun-Yao Lee & Guang-Lin Zhuo, 2021. "A Hybrid Whale Optimization Algorithm for Global Optimization," Mathematics, MDPI, vol. 9(13), pages 1-19, June.
    18. Malika Fodil & Ali Djerioui & Mohamed Ladjal & Abdelhakim Saim & Fouad Berrabah & Hemza Mekki & Samir Zeghlache & Azeddine Houari & Mohamed Fouad Benkhoris, 2023. "Optimization of PI Controller Parameters by GWO Algorithm for Five-Phase Asynchronous Motor," Energies, MDPI, vol. 16(10), pages 1-14, May.
    19. Wei-Guo Zhang & Zhe Li & Yong-Jun Liu & Yue Zhang, 2021. "Pricing European Option Under Fuzzy Mixed Fractional Brownian Motion Model with Jumps," Computational Economics, Springer;Society for Computational Economics, vol. 58(2), pages 483-515, August.
    20. Kvasov, Dmitri E. & Mukhametzhanov, Marat S., 2018. "Metaheuristic vs. deterministic global optimization algorithms: The univariate case," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 245-259.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:197:y:2023:i:2:d:10.1007_s10957-023-02210-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.