IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v243y2022ics0360544221033107.html
   My bibliography  Save this article

Optimal dispatching of wind-PV-mine pumped storage power station: A case study in Lingxin Coal Mine in Ningxia Province, China

Author

Listed:
  • Gao, Renbo
  • Wu, Fei
  • Zou, Quanle
  • Chen, Jie

Abstract

With the gradual transformation of global energy, photovoltaic power generation, wind power generation, and other renewable energy have attracted countries around the world. Western China has excellent wind and solar energy resources, which are highly vulnerable to external factors and have severe limitations. Considering the gradual maturity of storage and energy storage technology of abandoned mine reservoirs, the combination of storage and energy storage technology of abandoned coal mines and wind-solar power generation technology can realize the reasonable allocation of electric energy in the time dimension. This paper studies the regulation capability of the mine pumped-hydro energy storage system proposed by scholars and uses the wind-photoelectric field model to predict the output power of wind farms and solar power stations. Taking the Lingxin coal mine as an example, the optimization algorithm is used to optimize the dispatching ability of the entire PHS joint system. The results prove that the system proposed in this paper can significantly improve the instability of the generation power curve (In terms of variance, volatility decreases to 18.76%), and improve the overall system revenue to some extent (economic efficiency increased by 15.47%). This provides certain technical support for the better utilization of new energy in the future.

Suggested Citation

  • Gao, Renbo & Wu, Fei & Zou, Quanle & Chen, Jie, 2022. "Optimal dispatching of wind-PV-mine pumped storage power station: A case study in Lingxin Coal Mine in Ningxia Province, China," Energy, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:energy:v:243:y:2022:i:c:s0360544221033107
    DOI: 10.1016/j.energy.2021.123061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221033107
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.123061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Yingqi & Kokko, Ari, 2010. "Wind power in China: Policy and development challenges," Energy Policy, Elsevier, vol. 38(10), pages 5520-5529, October.
    2. Teuvo Suntio & Alon Kuperman, 2019. "Maximum Perturbation Step Size in MPP-Tracking Control for Ensuring Predicted PV Power Settling Behavior," Energies, MDPI, vol. 12(20), pages 1-19, October.
    3. Fan, Jinyang & Liu, Wei & Jiang, Deyi & Chen, Junchao & Ngaha Tiedeu, William & Chen, Jie & JJK, Deaman, 2018. "Thermodynamic and applicability analysis of a hybrid CAES system using abandoned coal mine in China," Energy, Elsevier, vol. 157(C), pages 31-44.
    4. Vasileios Kitsikoudis & Pierre Archambeau & Benjamin Dewals & Estanislao Pujades & Philippe Orban & Alain Dassargues & Michel Pirotton & Sebastien Erpicum, 2020. "Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Underground Reservoir Hydraulics," Energies, MDPI, vol. 13(14), pages 1-16, July.
    5. Winde, Frank & Kaiser, Friederike & Erasmus, Ewald, 2017. "Exploring the use of deep level gold mines in South Africa for underground pumped hydroelectric energy storage schemes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 668-682.
    6. Zhou, Sheng & Wang, Yu & Zhou, Yuyu & Clarke, Leon E. & Edmonds, James A., 2018. "Roles of wind and solar energy in China’s power sector: Implications of intermittency constraints," Applied Energy, Elsevier, vol. 213(C), pages 22-30.
    7. Liu, Wei & Zhang, Zhixin & Chen, Jie & Fan, Jinyang & Jiang, Deyi & Jjk, Daemen & Li, Yinping, 2019. "Physical simulation of construction and control of two butted-well horizontal cavern energy storage using large molded rock salt specimens," Energy, Elsevier, vol. 185(C), pages 682-694.
    8. Jidai Wang & Kunpeng Lu & Lan Ma & Jihong Wang & Mark Dooner & Shihong Miao & Jian Li & Dan Wang, 2017. "Overview of Compressed Air Energy Storage and Technology Development," Energies, MDPI, vol. 10(7), pages 1-22, July.
    9. Saidur, R. & Rahim, N.A. & Islam, M.R. & Solangi, K.H., 2011. "Environmental impact of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2423-2430, June.
    10. Liu, Li-qun & Wang, Zhi-xin, 2009. "The development and application practice of wind-solar energy hybrid generation systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1504-1512, August.
    11. Garg, Harish, 2016. "A hybrid PSO-GA algorithm for constrained optimization problems," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 292-305.
    12. Estanislao Pujades & Philippe Orban & Pierre Archambeau & Vasileios Kitsikoudis & Sebastien Erpicum & Alain Dassargues, 2020. "Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Interactions with Groundwater Flow," Energies, MDPI, vol. 13(9), pages 1-21, May.
    13. Chen, Jie & Liu, Wei & Jiang, Deyi & Zhang, Junwei & Ren, Song & Li, Lin & Li, Xiaokang & Shi, Xilin, 2017. "Preliminary investigation on the feasibility of a clean CAES system coupled with wind and solar energy in China," Energy, Elsevier, vol. 127(C), pages 462-478.
    14. Thapar, Vinay & Agnihotri, Gayatri & Sethi, Vinod Krishna, 2011. "Critical analysis of methods for mathematical modelling of wind turbines," Renewable Energy, Elsevier, vol. 36(11), pages 3166-3177.
    15. Pujades, Estanislao & Orban, Philippe & Bodeux, Sarah & Archambeau, Pierre & Erpicum, Sébastien & Dassargues, Alain, 2017. "Underground pumped storage hydropower plants using open pit mines: How do groundwater exchanges influence the efficiency?," Applied Energy, Elsevier, vol. 190(C), pages 135-146.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weber, Timothy & Stocks, Ryan & Blakers, Andrew & Nadolny, Anna & Cheng, Cheng, 2024. "A global atlas of pumped hydro systems that repurpose existing mining sites," Renewable Energy, Elsevier, vol. 224(C).
    2. Qianjun Chen & Zhengmeng Hou & Xuning Wu & Shengyou Zhang & Wei Sun & Yanli Fang & Lin Wu & Liangchao Huang & Tian Zhang, 2023. "A Two-Step Site Selection Concept for Underground Pumped Hydroelectric Energy Storage and Potential Estimation of Coal Mines in Henan Province," Energies, MDPI, vol. 16(12), pages 1-21, June.
    3. Zhong, Xiaohui & Chen, Tao & Sun, Xiangyu & Song, Juanjuan & Zeng, Jiajun, 2022. "Conventional and advanced exergy analysis of a novel wind-to-heat system," Energy, Elsevier, vol. 261(PA).
    4. Liu, Zhi-Feng & Zhao, Shi-Xiang & Zhao, Shuang-Le & You, Guo-Dong & Hou, Xiao-Xin & Yu, Jia-Li & Li, Ling-Ling & Chen, Bo, 2023. "Improving the economic and environmental benefits of the energy system: A novel hybrid economic emission dispatch considering clean energy power uncertainty," Energy, Elsevier, vol. 285(C).
    5. Zhixin Zhang & Qiang Guo & Wei Liu, 2022. "Evaluation of Long-Term Tightness of the Coal Pillar Dam of Underground Reservoir and Protection Countermeasures," Energies, MDPI, vol. 15(19), pages 1-20, October.
    6. Zhang, Zhengjia & Wang, Qingxiang & Liu, Zhengguang & Chen, Qi & Guo, Zhiling & Zhang, Haoran, 2023. "Renew mineral resource-based cities: Assessment of PV potential in coal mining subsidence areas," Applied Energy, Elsevier, vol. 329(C).
    7. Duan, Hongyu & Ma, Dan & Zou, Liangchao & Xie, Shijie & Liu, Yong, 2024. "Co-exploitation of coal and geothermal energy through water-conducting structures: Improving extraction efficiency of geothermal well," Renewable Energy, Elsevier, vol. 228(C).
    8. Xie, Rui & Wei, Wei & Li, Mingxuan & Dong, ZhaoYang & Mei, Shengwei, 2023. "Sizing capacities of renewable generation, transmission, and energy storage for low-carbon power systems: A distributionally robust optimization approach," Energy, Elsevier, vol. 263(PA).
    9. Xin Lyu & Ke Yang & Juejing Fang & Jinzhou Tang & Yu Wang, 2022. "Feasibility Study of Construction of Pumped Storage Power Station Using Abandoned Mines: A Case Study of the Shitai Mine," Energies, MDPI, vol. 16(1), pages 1-16, December.
    10. Hu, Wenyu & E, Jiaqiang & Zhang, Feng & Chen, Jingwei & Ma, Yinjie & Leng, Erwei, 2022. "Investigation on cooperative mechanism between convective wind energy harvesting and dust collection during vehicle driving on the highway," Energy, Elsevier, vol. 260(C).
    11. Xin Lyu & Tong Zhang & Liang Yuan & Ke Yang & Juejing Fang & Shanshan Li & Shuai Liu, 2022. "Pumped Storage Hydropower in Abandoned Mine Shafts: Key Concerns and Research Directions," Sustainability, MDPI, vol. 14(23), pages 1-14, November.
    12. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    13. Xian Yang & Ye Cai & Yijia Cao & Shaowei Duan & Liang Tang & Zhijian Jia, 2022. "The Semi-Scheduling Mode of Multi-Energy System Considering Risk–Utility in Day-Ahead Market," Energies, MDPI, vol. 15(21), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xiong & Liu, Wei & Jiang, Deyi & Qiao, Weibiao & Liu, Enbin & Zhang, Nan & Fan, Jinyang, 2021. "Investigation on the influences of interlayer contents on stability and usability of energy storage caverns in bedded rock salt," Energy, Elsevier, vol. 231(C).
    2. Fan, Jinyang & Xie, Heping & Chen, Jie & Jiang, Deyi & Li, Cunbao & Ngaha Tiedeu, William & Ambre, Julien, 2020. "Preliminary feasibility analysis of a hybrid pumped-hydro energy storage system using abandoned coal mine goafs," Applied Energy, Elsevier, vol. 258(C).
    3. Vasileios Kitsikoudis & Pierre Archambeau & Benjamin Dewals & Estanislao Pujades & Philippe Orban & Alain Dassargues & Michel Pirotton & Sebastien Erpicum, 2020. "Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Underground Reservoir Hydraulics," Energies, MDPI, vol. 13(14), pages 1-16, July.
    4. Liu, Wei & Zhang, Zhixin & Chen, Jie & Jiang, Deyi & Wu, Fei & Fan, Jinyang & Li, Yinping, 2020. "Feasibility evaluation of large-scale underground hydrogen storage in bedded salt rocks of China: A case study in Jiangsu province," Energy, Elsevier, vol. 198(C).
    5. Wang, Junbao & Wang, Xiaopeng & Zhang, Qiang & Song, Zhanping & Zhang, Yuwei, 2021. "Dynamic prediction model for surface settlement of horizontal salt rock energy storage," Energy, Elsevier, vol. 235(C).
    6. Estanislao Pujades & Philippe Orban & Pierre Archambeau & Vasileios Kitsikoudis & Sebastien Erpicum & Alain Dassargues, 2020. "Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Interactions with Groundwater Flow," Energies, MDPI, vol. 13(9), pages 1-21, May.
    7. Candra Saigustia & Sylwester Robak, 2021. "Review of Potential Energy Storage in Abandoned Mines in Poland," Energies, MDPI, vol. 14(19), pages 1-16, October.
    8. Xin Zhou & Yuejin Zhou & Xiaoding Xu & Chunlin Zeng & Chaobin Zhu, 2023. "Hydraulic Characteristics Analysis of Double-Bend Roadway of Abandoned Mine Pumped Storage," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    9. Tong, Zheming & Cheng, Zhewu & Tong, Shuiguang, 2021. "A review on the development of compressed air energy storage in China: Technical and economic challenges to commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Vasudevan, Krishnakumar R. & Ramachandaramurthy, Vigna K. & Venugopal, Gomathi & Ekanayake, J.B. & Tiong, S.K., 2021. "Variable speed pumped hydro storage: A review of converters, controls and energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Xu, Fang Yuan & Tang, Rui Xin & Xu, Si Bin & Fan, Yi Liang & Zhou, Ya & Zhang, Hao Tian, 2021. "Neural network-based photovoltaic generation capacity prediction system with benefit-oriented modification," Energy, Elsevier, vol. 223(C).
    12. Hunt, Julian David & Zakeri, Behnam & Lopes, Rafael & Barbosa, Paulo Sérgio Franco & Nascimento, Andreas & Castro, Nivalde José de & Brandão, Roberto & Schneider, Paulo Smith & Wada, Yoshihide, 2020. "Existing and new arrangements of pumped-hydro storage plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    13. Shan, Rui & Reagan, Jeremiah & Castellanos, Sergio & Kurtz, Sarah & Kittner, Noah, 2022. "Evaluating emerging long-duration energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    14. Tomas Baležentis & Dalia Štreimikienė, 2019. "Sustainability in the Electricity Sector through Advanced Technologies: Energy Mix Transition and Smart Grid Technology in China," Energies, MDPI, vol. 12(6), pages 1-21, March.
    15. Zhang, Sufang & He, Yongxiu, 2013. "Analysis on the development and policy of solar PV power in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 393-401.
    16. Li, Hang & Ma, Hongling & Zhao, Kai & Zhu, Shijie & Yang, Kun & Zeng, Zhen & Zheng, Zhuyan & Yang, Chunhe, 2024. "Parameter design of the compressed air energy storage salt cavern in highly impure rock salt formations," Energy, Elsevier, vol. 286(C).
    17. Zhixin Zhang & Qiang Guo & Wei Liu, 2022. "Evaluation of Long-Term Tightness of the Coal Pillar Dam of Underground Reservoir and Protection Countermeasures," Energies, MDPI, vol. 15(19), pages 1-20, October.
    18. Roham Torabi & Alvaro Gomes & Diogo Lobo & Fernando Morgado‐Dias, 2020. "Modelling demand flexibility and energy storage to support increased penetration of renewable energy resources on Porto Santo," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(6), pages 1118-1132, December.
    19. Nejat, Payam & Morsoni, Abdul Kasir & Jomehzadeh, Fatemeh & Behzad, Hamid & Saeed Vesali, Mohamad & Majid, M.Z.Abd., 2013. "Iran's achievements in renewable energy during fourth development program in comparison with global trend," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 561-570.
    20. Xin Lyu & Tong Zhang & Liang Yuan & Ke Yang & Juejing Fang & Shanshan Li & Shuai Liu, 2022. "Pumped Storage Hydropower in Abandoned Mine Shafts: Key Concerns and Research Directions," Sustainability, MDPI, vol. 14(23), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:243:y:2022:i:c:s0360544221033107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.