IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v146y2019icp41-54.html
   My bibliography  Save this article

A hybrid PSO-SVM model based on clustering algorithm for short-term atmospheric pollutant concentration forecasting

Author

Listed:
  • Chen, Shuixia
  • Wang, Jian-qiang
  • Zhang, Hong-yu

Abstract

Air pollution can lead to a wide range of hazards and can affect most organisms on Earth. Therefore, managing and controlling air pollution has become a top priority for many countries. An effective short-term atmospheric pollutant concentration forecasting (SAPCF) can mitigate the negative effects of atmospheric pollution. In this paper, we propose a new hybrid forecasting model for SAPCF. Firstly, we analyse the influential factors of pollutants to obtain the optimal combination of input variables. Secondly, we use a clustering algorithm to enhance the regularity of our modelling data. Thirdly, we build a particle swarm optimisation (PSO)–support vector machine (SVM) hybrid model called PSO–SVM and perform a case study in Temple of Heaven, Beijing to test its forecasting accuracy and validate its performance against three contrastive models. The first model inputs all possible variables in equal weight without influence factor analysis. The second model integrates the same input variables used in the proposed model without clustering. The third model inputs these same variables with genetic-algorithm optimised SVM parameters. The comparison amongst these models demonstrates the superior performance of our proposed hybrid model. We further verify the forecasting results of our hybrid model by conducting statistical tests.

Suggested Citation

  • Chen, Shuixia & Wang, Jian-qiang & Zhang, Hong-yu, 2019. "A hybrid PSO-SVM model based on clustering algorithm for short-term atmospheric pollutant concentration forecasting," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 41-54.
  • Handle: RePEc:eee:tefoso:v:146:y:2019:i:c:p:41-54
    DOI: 10.1016/j.techfore.2019.05.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162518314549
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2019.05.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bollen, Johannes, 2015. "The value of air pollution co-benefits of climate policies: Analysis with a global sector-trade CGE model called WorldScan," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 178-191.
    2. Nur Rahman & Muhammad Lee & Suhartono & Mohd Latif, 2015. "Artificial neural networks and fuzzy time series forecasting: an application to air quality," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(6), pages 2633-2647, November.
    3. Kristof Coussement & Stefan Lessmann & Geert Verstraeten, 2017. "A comparative analysis of data preparation algorithms for customer churn prediction: A case study in the telecommunication industry," Post-Print hal-01745261, HAL.
    4. Hong, Wei-Chiang, 2010. "Application of chaotic ant swarm optimization in electric load forecasting," Energy Policy, Elsevier, vol. 38(10), pages 5830-5839, October.
    5. Patwal, Rituraj Singh & Narang, Nitin & Garg, Harish, 2018. "A novel TVAC-PSO based mutation strategies algorithm for generation scheduling of pumped storage hydrothermal system incorporating solar units," Energy, Elsevier, vol. 142(C), pages 822-837.
    6. Wang, Yichuan & Kung, LeeAnn & Byrd, Terry Anthony, 2018. "Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 3-13.
    7. Garg, Harish, 2016. "A hybrid PSO-GA algorithm for constrained optimization problems," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 292-305.
    8. Barman, Mayur & Dev Choudhury, N.B. & Sutradhar, Suman, 2018. "A regional hybrid GOA-SVM model based on similar day approach for short-term load forecasting in Assam, India," Energy, Elsevier, vol. 145(C), pages 710-720.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Yu-jie & Wang, Xiao-kang & Wang, Jian-qiang & Zhang, Hong-yu, 2021. "An adaptive decomposition and ensemble model for short-term air pollutant concentration forecast using ICEEMDAN-ICA," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    2. Marchetti, Dalmo & Wanke, Peter, 2020. "Efficiency of the rail sections in Brazilian railway system, using TOPSIS and a genetic algorithm to analyse optimized scenarios," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 135(C).
    3. Wang, Jujie & Xu, Wenjie & Zhang, Yue & Dong, Jian, 2022. "A novel air quality prediction and early warning system based on combined model of optimal feature extraction and intelligent optimization," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    4. Pei Du & Jianzhou Wang & Wendong Yang & Tong Niu, 2022. "A novel hybrid fine particulate matter (PM2.5) forecasting and its further application system: Case studies in China," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 64-85, January.
    5. Zhao, Xueyuan & Gao, Weijun & Qian, Fanyue & Ge, Jian, 2021. "Electricity cost comparison of dynamic pricing model based on load forecasting in home energy management system," Energy, Elsevier, vol. 229(C).
    6. Schlembach, Christoph & Schmidt, Sascha L. & Schreyer, Dominik & Wunderlich, Linus, 2022. "Forecasting the Olympic medal distribution – A socioeconomic machine learning model," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    7. Li, Ranran & Hu, Yucai & Heng, Jiani & Chen, Xueli, 2021. "A novel multiscale forecasting model for crude oil price time series," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    8. Lu, Hongfang & Ma, Xin & Huang, Kun & Azimi, Mohammadamin, 2020. "Prediction of offshore wind farm power using a novel two-stage model combining kernel-based nonlinear extension of the Arps decline model with a multi-objective grey wolf optimizer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    9. Wang, Zicheng & Gao, Ruobin & Wang, Piao & Chen, Huayou, 2023. "A new perspective on air quality index time series forecasting: A ternary interval decomposition ensemble learning paradigm," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    10. Muhammad Muhitur Rahman & Md Shafiullah & Syed Masiur Rahman & Abu Nasser Khondaker & Abduljamiu Amao & Md. Hasan Zahir, 2020. "Soft Computing Applications in Air Quality Modeling: Past, Present, and Future," Sustainability, MDPI, vol. 12(10), pages 1-33, May.
    11. Ping Liu & Mengchu Xie & Jing Bian & Huishan Li & Liangliang Song, 2020. "A Hybrid PSO–SVM Model Based on Safety Risk Prediction for the Design Process in Metro Station Construction," IJERPH, MDPI, vol. 17(5), pages 1-24, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kong, Xiangyu & Li, Chuang & Wang, Chengshan & Zhang, Yusen & Zhang, Jian, 2020. "Short-term electrical load forecasting based on error correction using dynamic mode decomposition," Applied Energy, Elsevier, vol. 261(C).
    2. Hu, Yusha & Li, Jigeng & Hong, Mengna & Ren, Jingzheng & Lin, Ruojue & Liu, Yue & Liu, Mengru & Man, Yi, 2019. "Short term electric load forecasting model and its verification for process industrial enterprises based on hybrid GA-PSO-BPNN algorithm—A case study of papermaking process," Energy, Elsevier, vol. 170(C), pages 1215-1227.
    3. Talaat, M. & Farahat, M.A. & Mansour, Noura & Hatata, A.Y., 2020. "Load forecasting based on grasshopper optimization and a multilayer feed-forward neural network using regressive approach," Energy, Elsevier, vol. 196(C).
    4. Ahmed A. Ewees & Mohammed A. A. Al-qaness & Laith Abualigah & Diego Oliva & Zakariya Yahya Algamal & Ahmed M. Anter & Rehab Ali Ibrahim & Rania M. Ghoniem & Mohamed Abd Elaziz, 2021. "Boosting Arithmetic Optimization Algorithm with Genetic Algorithm Operators for Feature Selection: Case Study on Cox Proportional Hazards Model," Mathematics, MDPI, vol. 9(18), pages 1-22, September.
    5. Barman, Mayur & Dev Choudhury, Nalin Behari, 2019. "Season specific approach for short-term load forecasting based on hybrid FA-SVM and similarity concept," Energy, Elsevier, vol. 174(C), pages 886-896.
    6. Chun-Yao Lee & Guang-Lin Zhuo, 2021. "A Hybrid Whale Optimization Algorithm for Global Optimization," Mathematics, MDPI, vol. 9(13), pages 1-19, June.
    7. Fazli Wahid & Rozaida Ghazali & Lokman Hakim Ismail & Ali M. Algarwi Aseere, 2023. "An Optimal Neural Network for Hourly and Daily Energy Consumption Prediction in Buildings," International Journal of Swarm Intelligence Research (IJSIR), IGI Global, vol. 14(1), pages 1-13, January.
    8. Zaher Mundher Yaseen & Mohammad Ehteram & Md. Shabbir Hossain & Chow Ming Fai & Suhana Binti Koting & Nuruol Syuhadaa Mohd & Wan Zurina Binti Jaafar & Haitham Abdulmohsin Afan & Lai Sai Hin & Nuratiah, 2019. "A Novel Hybrid Evolutionary Data-Intelligence Algorithm for Irrigation and Power Production Management: Application to Multi-Purpose Reservoir Systems," Sustainability, MDPI, vol. 11(7), pages 1-28, April.
    9. Mariani, Marcello M. & Fosso Wamba, Samuel, 2020. "Exploring how consumer goods companies innovate in the digital age: The role of big data analytics companies," Journal of Business Research, Elsevier, vol. 121(C), pages 338-352.
    10. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    11. Basile, Luigi Jesus & Carbonara, Nunzia & Pellegrino, Roberta & Panniello, Umberto, 2023. "Business intelligence in the healthcare industry: The utilization of a data-driven approach to support clinical decision making," Technovation, Elsevier, vol. 120(C).
    12. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    13. Miraç Fatih İLGÜN, 2020. "Industry 4.0 and Transformation in Public Finance: An Assessment by Government Expenditures," Sosyoekonomi Journal, Sosyoekonomi Society, issue 28(44).
    14. Zhang, Ning & Li, Zhiying & Zou, Xun & Quiring, Steven M., 2019. "Comparison of three short-term load forecast models in Southern California," Energy, Elsevier, vol. 189(C).
    15. Sakthivel, V.P. & Thirumal, K. & Sathya, P.D., 2022. "Short term scheduling of hydrothermal power systems with photovoltaic and pumped storage plants using quasi-oppositional turbulent water flow optimization," Renewable Energy, Elsevier, vol. 191(C), pages 459-492.
    16. Nguyen Dang Tuan, Minh & Nguyen Thanh, Nhan & Le Tuan, Loc, 2019. "Applying a mindfulness-based reliability strategy to the Internet of Things in healthcare – A business model in the Vietnamese market," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 54-68.
    17. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    18. Yu, Wantao & Zhao, Gen & Liu, Qi & Song, Yongtao, 2021. "Role of big data analytics capability in developing integrated hospital supply chains and operational flexibility: An organizational information processing theory perspective," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    19. Jiang, Syuan-Yi, 2022. "Transition and innovation ecosystem – investigating technologies, focal actors, and institution in eHealth innovations," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    20. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:146:y:2019:i:c:p:41-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.