IDEAS home Printed from https://ideas.repec.org/a/spr/grdene/v31y2022i5d10.1007_s10726-022-09787-w.html
   My bibliography  Save this article

Managing Group Confidence and Consensus in Intuitionistic Fuzzy Large Group Decision-Making Based on Social Media Data Mining

Author

Listed:
  • Xiaohong Chen

    (Central South University
    Hunan University of Technology and Business)

  • Weiwei Zhang

    (Central South University
    Hunan University of Technology and Business)

  • Xuanhua Xu

    (Central South University
    Hunan University of Technology and Business)

  • Wenzhi Cao

    (Central South University
    Hunan University of Technology and Business)

Abstract

Social media has played an increasingly important role in decision-making for public issues, and the concerns of the public, an important reference for which is in social media, have increasingly attracted attention in the field of large group decision-making (LGDM). On this basis, this paper presents a novel LGDM model based on social media data mining to manage group confidence and consensus. The proposed model comprises three processes, namely (1) term frequency-inverse document frequency (TF-IDF) keyword extraction, (2) the management of group confidence and consensus, (3) the selection process. In the first process, natural language processing (NLP) technology is used to extract keywords from social media data, and the topic of concern by the public is regarded as the evaluation criteria of decision-making alternatives. Then the TF-IDF weighting method is used to determine the weight of each criterion. Regarding the second process, the concept of the confidence correlation degree is defined, and a novel confidence-consensus model is proposed to manage group confidence and consensus. In the group consensus-reaching process (CRP), if the most incompatible cluster (or subgroup) has a higher confidence correlation degree regarding its own opinions, then it is advised that the weight of the cluster be reduced; if the most incompatible cluster has a lower confidence correlation degree regarding its own opinions, then it is advised that the cluster changes its opinions. In the third process, the weights of the criteria determined by the TF-IDF measure are aggregated, and the decision results are obtained. A case study is provided to illustrate the application of the proposed method, and the results of a comparative analysis reveal the features and advantages of this model.

Suggested Citation

  • Xiaohong Chen & Weiwei Zhang & Xuanhua Xu & Wenzhi Cao, 2022. "Managing Group Confidence and Consensus in Intuitionistic Fuzzy Large Group Decision-Making Based on Social Media Data Mining," Group Decision and Negotiation, Springer, vol. 31(5), pages 995-1023, October.
  • Handle: RePEc:spr:grdene:v:31:y:2022:i:5:d:10.1007_s10726-022-09787-w
    DOI: 10.1007/s10726-022-09787-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10726-022-09787-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10726-022-09787-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sumin Yu & Zhijiao Du & Xuanhua Xu, 2021. "Hierarchical Punishment-Driven Consensus Model for Probabilistic Linguistic Large-Group Decision Making with Application to Global Supplier Selection," Group Decision and Negotiation, Springer, vol. 30(6), pages 1343-1372, December.
    2. Pei Wang & Xuanhua Xu & Shuai Huang, 2019. "An Improved Consensus-Based Model for Large Group Decision Making Problems Considering Experts with Linguistic Weighted Information," Group Decision and Negotiation, Springer, vol. 28(3), pages 619-640, June.
    3. Chenxi Zhang & Meng Zhao & Lichao Zhao & Qinfei Yuan, 2021. "A Consensus Model for Large-Scale Group Decision-Making Based on the Trust Relationship Considering Leadership Behaviors and Non-cooperative Behaviors," Group Decision and Negotiation, Springer, vol. 30(3), pages 553-586, June.
    4. Galo, Nadya Regina & Calache, Lucas Daniel Del Rosso & Carpinetti, Luiz Cesar Ribeiro, 2018. "A group decision approach for supplier categorization based on hesitant fuzzy and ELECTRE TRI," International Journal of Production Economics, Elsevier, vol. 202(C), pages 182-196.
    5. Liu, Bingsheng & Shen, Yinghua & Zhang, Wei & Chen, Xiaohong & Wang, Xueqing, 2015. "An interval-valued intuitionistic fuzzy principal component analysis model-based method for complex multi-attribute large-group decision-making," European Journal of Operational Research, Elsevier, vol. 245(1), pages 209-225.
    6. Jamali, Mehdi & Nejat, Ali & Ghosh, Souparno & Jin, Fang & Cao, Guofeng, 2019. "Social media data and post-disaster recovery," International Journal of Information Management, Elsevier, vol. 44(C), pages 25-37.
    7. Fu, Chao & Chang, Wenjun & Xue, Min & Yang, Shanlin, 2019. "Multiple criteria group decision making with belief distributions and distributed preference relations," European Journal of Operational Research, Elsevier, vol. 273(2), pages 623-633.
    8. Zhang, Hengjie & Dong, Yucheng & Chiclana, Francisco & Yu, Shui, 2019. "Consensus efficiency in group decision making: A comprehensive comparative study and its optimal design," European Journal of Operational Research, Elsevier, vol. 275(2), pages 580-598.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tiantian Gai & Mingshuo Cao & Francisco Chiclana & Zhen Zhang & Yucheng Dong & Enrique Herrera-Viedma & Jian Wu, 2023. "Consensus-trust Driven Bidirectional Feedback Mechanism for Improving Consensus in Social Network Large-group Decision Making," Group Decision and Negotiation, Springer, vol. 32(1), pages 45-74, February.
    2. Zhou, Jian-Lan & Tu, Ren-Fang & Xiao, Hai, 2022. "Large-scale group decision-making to facilitate inter-rater reliability of human-factors analysis for the railway system," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    3. Wei Xu & Junjun Mao & Mengmeng Zhu, 2023. "The Determination and Elimination of Decision Makers’ Hidden Inherent Preference in Probabilistic Linguistic Group Decision-Making," Group Decision and Negotiation, Springer, vol. 32(5), pages 1025-1060, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yanhong & Kou, Gang & Li, Guangxu & Peng, Yi, 2022. "Consensus reaching process in large-scale group decision making based on bounded confidence and social network," European Journal of Operational Research, Elsevier, vol. 303(2), pages 790-802.
    2. Chao, Xiangrui & Kou, Gang & Peng, Yi & Viedma, Enrique Herrera, 2021. "Large-scale group decision-making with non-cooperative behaviors and heterogeneous preferences: An application in financial inclusion," European Journal of Operational Research, Elsevier, vol. 288(1), pages 271-293.
    3. Tang, Ming & Liao, Huchang, 2021. "From conventional group decision making to large-scale group decision making: What are the challenges and how to meet them in big data era? A state-of-the-art survey," Omega, Elsevier, vol. 100(C).
    4. Eduardo Fernández & Claudia Gómez-Santillán & Nelson Rangel-Valdez & Laura Cruz-Reyes, 2022. "Group Multi-Objective Optimization Under Imprecision and Uncertainty Using a Novel Interval Outranking Approach," Group Decision and Negotiation, Springer, vol. 31(5), pages 945-994, October.
    5. Zhen Zhang & Zhuolin Li, 2023. "Consensus-based TOPSIS-Sort-B for multi-criteria sorting in the context of group decision-making," Annals of Operations Research, Springer, vol. 325(2), pages 911-938, June.
    6. Yin, Xuanpeng & Xu, Xuanhua & Pan, Bin, 2021. "Selection of Strategy for Large Group Emergency Decision-making based on Risk Measurement," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    7. Qifeng Wan & Xuanhua Xu & Xiaohong Chen & Jun Zhuang, 2020. "A Two-Stage Optimization Model for Large-Scale Group Decision-Making in Disaster Management: Minimizing Group Conflict and Maximizing Individual Satisfaction," Group Decision and Negotiation, Springer, vol. 29(5), pages 901-921, October.
    8. Feifei Jin & Jinpei Liu & Ligang Zhou & Luis Martínez, 2021. "Consensus-Based Linguistic Distribution Large-Scale Group Decision Making Using Statistical Inference and Regret Theory," Group Decision and Negotiation, Springer, vol. 30(4), pages 813-845, August.
    9. Liang, Decui & Fu, Yuanyuan & Ishizaka, Alessio, 2023. "A consensual group ELECTRE-SORT approach considering the incomparable classes with the application of machine maintenance strategy assignment," Omega, Elsevier, vol. 118(C).
    10. Zhang-peng Tian & Hong-yu Zhang & Jing Wang & Jian-qiang Wang & Xiao-hong Chen, 2016. "Multi-criteria decision-making method based on a cross-entropy with interval neutrosophic sets," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(15), pages 3598-3608, November.
    11. Muhammad Ashraf Fauzi, 2023. "Social media in disaster management: review of the literature and future trends through bibliometric analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 953-975, September.
    12. Yu Zhang & Wen Jiang & Xinyang Deng, 2019. "Fault diagnosis method based on time domain weighted data aggregation and information fusion," International Journal of Distributed Sensor Networks, , vol. 15(9), pages 15501477198, September.
    13. Zhang, Bowen & Dong, Yucheng & Zhang, Hengjie & Pedrycz, Witold, 2020. "Consensus mechanism with maximum-return modifications and minimum-cost feedback: A perspective of game theory," European Journal of Operational Research, Elsevier, vol. 287(2), pages 546-559.
    14. Xiaohong Chen & Mengjing Wu & Chunqiao Tan & Tao Zhang, 2021. "A random intuitionistic fuzzy factor analysis model for complex multi-attribute large group decision-making in dynamic environments," Fuzzy Optimization and Decision Making, Springer, vol. 20(1), pages 101-127, March.
    15. Huimin Xiao & Shouwen Wu & Chunsheng Cui, 2022. "The Research on Consistency Checking and Improvement of Probabilistic Linguistic Preference Relation Based on Similarity Measure and Minimum Adjustment Model," Mathematics, MDPI, vol. 10(9), pages 1-18, April.
    16. Liguo Fei & Jun Xia & Yuqiang Feng & Luning Liu, 2019. "A novel method to determine basic probability assignment in Dempster–Shafer theory and its application in multi-sensor information fusion," International Journal of Distributed Sensor Networks, , vol. 15(7), pages 15501477198, July.
    17. Sheng Cheng & Liqun Liu & Ke Li, 2020. "Explaining the Factors Influencing the Individuals’ Continuance Intention to Seek Information on Weibo during Rainstorm Disasters," IJERPH, MDPI, vol. 17(17), pages 1-16, August.
    18. Wang, Peng & Liu, Peide & Li, Yueyuan & Teng, Fei & Pedrycz, Witold, 2024. "Trust exploration- and leadership incubation- based opinion dynamics model for social network group decision-making: A quantum theory perspective," European Journal of Operational Research, Elsevier, vol. 317(1), pages 156-170.
    19. Abhinav Kumar & Jyoti Prakash Singh & Yogesh K. Dwivedi & Nripendra P. Rana, 2022. "A deep multi-modal neural network for informative Twitter content classification during emergencies," Annals of Operations Research, Springer, vol. 319(1), pages 791-822, December.
    20. Yuanming Li & Ying Ji & Shaojian Qu, 2022. "Consensus Building for Uncertain Large-Scale Group Decision-Making Based on the Clustering Algorithm and Robust Discrete Optimization," Group Decision and Negotiation, Springer, vol. 31(2), pages 453-489, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:31:y:2022:i:5:d:10.1007_s10726-022-09787-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.