IDEAS home Printed from https://ideas.repec.org/a/spr/grdene/v32y2023i1d10.1007_s10726-022-09798-7.html
   My bibliography  Save this article

Consensus-trust Driven Bidirectional Feedback Mechanism for Improving Consensus in Social Network Large-group Decision Making

Author

Listed:
  • Tiantian Gai

    (Shanghai Maritime University)

  • Mingshuo Cao

    (Shanghai Maritime University)

  • Francisco Chiclana

    (De Montfort University
    University of Granada)

  • Zhen Zhang

    (Dalian University of Technology)

  • Yucheng Dong

    (Sichuan University)

  • Enrique Herrera-Viedma

    (University of Granada
    King Abdulaziz University)

  • Jian Wu

    (Shanghai Maritime University)

Abstract

This paper proposes a consensus-trust driven framework of bidirectional interaction for social network large-group decision making. Firstly, the concepts of interaction consensus threshold and interaction trust threshold are defined, which are used to discriminate the interaction modes between subgroups into four categories. Corresponding hybrid feedback strategies are designed in which the consensus level and trust level of subgroups are regarded as reliable resources to facilitate the achievement of group consensus. Secondly, a minimum adjustment bidirectional feedback model considering cohesion is developed to help the interacting subgroups reach mutual consensus with minimum opinion modification. Finally, the proposed consensus framework is applied to a blockchain platform selection problem in supply chain to demonstrate the effectiveness and applicability of the model.

Suggested Citation

  • Tiantian Gai & Mingshuo Cao & Francisco Chiclana & Zhen Zhang & Yucheng Dong & Enrique Herrera-Viedma & Jian Wu, 2023. "Consensus-trust Driven Bidirectional Feedback Mechanism for Improving Consensus in Social Network Large-group Decision Making," Group Decision and Negotiation, Springer, vol. 32(1), pages 45-74, February.
  • Handle: RePEc:spr:grdene:v:32:y:2023:i:1:d:10.1007_s10726-022-09798-7
    DOI: 10.1007/s10726-022-09798-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10726-022-09798-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10726-022-09798-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Chunguang & Zhu, Qingyun & Sarkis, Joseph, 2021. "Joint blockchain service vendor-platform selection using social network relationships: A multi-provider multi-user decision perspective," International Journal of Production Economics, Elsevier, vol. 238(C).
    2. Dong, Qingxing & Cooper, Orrin, 2016. "A peer-to-peer dynamic adaptive consensus reaching model for the group AHP decision making," European Journal of Operational Research, Elsevier, vol. 250(2), pages 521-530.
    3. Hou, Fujun & Triantaphyllou, Evangelos, 2019. "An iterative approach for achieving consensus when ranking a finite set of alternatives by a group of experts," European Journal of Operational Research, Elsevier, vol. 275(2), pages 570-579.
    4. Wenyu Yu & Zhen Zhang & Qiuyan Zhong, 2021. "Consensus reaching for MAGDM with multi-granular hesitant fuzzy linguistic term sets: a minimum adjustment-based approach," Annals of Operations Research, Springer, vol. 300(2), pages 443-466, May.
    5. Jian Wu & Jun Chen & Wei Liu & Yujia Liu & Changyong Liang & Mingshuo Cao, 2022. "A Calibrated Individual Semantic Based Failure Mode and Effect Analysis and Its Application in Industrial Internet Platform," Mathematics, MDPI, vol. 10(14), pages 1-22, July.
    6. Li, Yanhong & Kou, Gang & Li, Guangxu & Peng, Yi, 2022. "Consensus reaching process in large-scale group decision making based on bounded confidence and social network," European Journal of Operational Research, Elsevier, vol. 303(2), pages 790-802.
    7. Xiaohong Chen & Weiwei Zhang & Xuanhua Xu & Wenzhi Cao, 2022. "Managing Group Confidence and Consensus in Intuitionistic Fuzzy Large Group Decision-Making Based on Social Media Data Mining," Group Decision and Negotiation, Springer, vol. 31(5), pages 995-1023, October.
    8. Qifeng Wan & Xuanhua Xu & Xiaohong Chen & Jun Zhuang, 2020. "A Two-Stage Optimization Model for Large-Scale Group Decision-Making in Disaster Management: Minimizing Group Conflict and Maximizing Individual Satisfaction," Group Decision and Negotiation, Springer, vol. 29(5), pages 901-921, October.
    9. Liu, Bingsheng & Zhou, Qi & Ding, Ru-Xi & Palomares, Iván & Herrera, Francisco, 2019. "Large-scale group decision making model based on social network analysis: Trust relationship-based conflict detection and elimination," European Journal of Operational Research, Elsevier, vol. 275(2), pages 737-754.
    10. Gong, Zaiwu & Guo, Weiwei & Słowiński, Roman, 2021. "Transaction and interaction behavior-based consensus model and its application to optimal carbon emission reduction," Omega, Elsevier, vol. 104(C).
    11. Zhang, Linling & Yuan, Jinjian & Gao, Xinyu & Jiang, Dawei, 2021. "Public transportation development decision-making under public participation: A large-scale group decision-making method based on fuzzy preference relations," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    12. Wenqi Liu & Hengjie Zhang & Haiming Liang & Cong-cong Li & Yucheng Dong, 2022. "Managing Consistency and Consensus Issues in Group Decision-Making with Self-Confident Additive Preference Relations and Without Feedback: A Nonlinear Optimization Method," Group Decision and Negotiation, Springer, vol. 31(1), pages 213-240, February.
    13. Cheng, Dong & Yuan, Yuxiang & Wu, Yong & Hao, Tiantian & Cheng, Faxin, 2022. "Maximum satisfaction consensus with budget constraints considering individual tolerance and compromise limit behaviors," European Journal of Operational Research, Elsevier, vol. 297(1), pages 221-238.
    14. Weijun Xu & Xin Chen & Yucheng Dong & Francisco Chiclana, 2021. "Impact of Decision Rules and Non-cooperative Behaviors on Minimum Consensus Cost in Group Decision Making," Group Decision and Negotiation, Springer, vol. 30(6), pages 1239-1260, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenfeng Zhu & Hengjie Zhang & Jing Xiao, 2023. "Coming to Consensus on Classification in Flexible Linguistic Preference Relations: The Role of Personalized Individual Semantics," Group Decision and Negotiation, Springer, vol. 32(5), pages 1237-1271, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Zaiwu & Guo, Weiwei & Słowiński, Roman, 2021. "Transaction and interaction behavior-based consensus model and its application to optimal carbon emission reduction," Omega, Elsevier, vol. 104(C).
    2. Feifei Jin & Chang Li & Jinpei Liu & Ligang Zhou, 2021. "Distribution Linguistic Fuzzy Group Decision Making Based on Consistency and Consensus Analysis," Mathematics, MDPI, vol. 9(19), pages 1-19, October.
    3. Tang, Ming & Liao, Huchang, 2021. "From conventional group decision making to large-scale group decision making: What are the challenges and how to meet them in big data era? A state-of-the-art survey," Omega, Elsevier, vol. 100(C).
    4. Dombi, József & Jónás, Tamás, 2024. "Consensus measures based on a fuzzy concept," European Journal of Operational Research, Elsevier, vol. 315(2), pages 642-653.
    5. Xiao Tan & Jianjun Zhu & Tong Wu, 2022. "Dynamic Reference Point-Oriented Consensus Mechanism in Linguistic Distribution Group Decision Making Restricted by Quantum Integration of Information," Group Decision and Negotiation, Springer, vol. 31(2), pages 491-528, April.
    6. Wenjun Chang & Chao Fu & Nanping Feng & Shanlin Yang, 2021. "Multi-criteria Group Decision Making with Various Ordinal Assessments," Group Decision and Negotiation, Springer, vol. 30(6), pages 1285-1314, December.
    7. Junliang Du & Sifeng Liu & Yong Liu & Liangyan Tao, 2023. "Multi-criteria Large-Scale Group Decision-Making in Linguistic Contexts: A Perspective of Conflict Analysis and Resolution," Group Decision and Negotiation, Springer, vol. 32(1), pages 177-207, February.
    8. Meng, Fan-Yong & Gong, Zai-Wu & Pedrycz, Witold & Chu, Jun-Fei, 2023. "Selfish-dilemma consensus analysis for group decision making in the perspective of cooperative game theory," European Journal of Operational Research, Elsevier, vol. 308(1), pages 290-305.
    9. Monica Martinez-Blasco & Vanessa Serrano & Francesc Prior & Jordi Cuadros, 2023. "Analysis of an event study using the Fama–French five-factor model: teaching approaches including spreadsheets and the R programming language," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-34, December.
    10. Wang, Chengfu & Chen, Xiangfeng & Xu, Xun & Jin, Wei, 2023. "Financing and operating strategies for blockchain technology-driven accounts receivable chains," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1279-1295.
    11. Nikita Moiseev & Alexey Mikhaylov & Hasan Dinçer & Serhat Yüksel, 2023. "Market capitalization shock effects on open innovation models in e-commerce: golden cut q-rung orthopair fuzzy multicriteria decision-making analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-25, December.
    12. Alexey Mikhaylov & Hasan Dinçer & Serhat Yüksel, 2023. "Analysis of financial development and open innovation oriented fintech potential for emerging economies using an integrated decision-making approach of MF-X-DMA and golden cut bipolar q-ROFSs," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-34, December.
    13. Yingtian Li, 2023. "A Multi-Step Interaction Opinion Dynamics Group Decision-Making Method and Its Application in Art Evaluation," International Journal of Fuzzy System Applications (IJFSA), IGI Global, vol. 12(1), pages 1-14, January.
    14. Hongjie Deng & Daji Ergu & Fangyao Liu & Bo Ma & Ying Cai, 2022. "Applying an Intelligent Approach to Environmental Sustainability Innovation in Complex Scenes," Sustainability, MDPI, vol. 14(24), pages 1-12, December.
    15. Wu, Zhibin & Huang, Shuai & Xu, Jiuping, 2019. "Multi-stage optimization models for individual consistency and group consensus with preference relations," European Journal of Operational Research, Elsevier, vol. 275(1), pages 182-194.
    16. Zhang, Bowen & Dong, Yucheng & Zhang, Hengjie & Pedrycz, Witold, 2020. "Consensus mechanism with maximum-return modifications and minimum-cost feedback: A perspective of game theory," European Journal of Operational Research, Elsevier, vol. 287(2), pages 546-559.
    17. Kalloniatis, Alexander C. & McLennan-Smith, Timothy A. & Roberts, Dale O., 2020. "Modelling distributed decision-making in Command and Control using stochastic network synchronisation," European Journal of Operational Research, Elsevier, vol. 284(2), pages 588-603.
    18. József Dombi & Jenő Fáró & Tamás Jónás, 2023. "A Fuzzy Entropy-Based Group Consensus Measure for Financial Investments," Mathematics, MDPI, vol. 12(1), pages 1-18, December.
    19. Zhang, Hengjie & Dong, Yucheng & Chiclana, Francisco & Yu, Shui, 2019. "Consensus efficiency in group decision making: A comprehensive comparative study and its optimal design," European Journal of Operational Research, Elsevier, vol. 275(2), pages 580-598.
    20. Xue, Min & Fu, Chao & Yang, Shan-Lin, 2020. "Group consensus reaching based on a combination of expert weight and expert reliability," Applied Mathematics and Computation, Elsevier, vol. 369(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:32:y:2023:i:1:d:10.1007_s10726-022-09798-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.