IDEAS home Printed from https://ideas.repec.org/a/spr/grdene/v28y2019i3d10.1007_s10726-019-09615-8.html
   My bibliography  Save this article

An Improved Consensus-Based Model for Large Group Decision Making Problems Considering Experts with Linguistic Weighted Information

Author

Listed:
  • Pei Wang

    (Guangdong University of Foreign Studies
    Central South University)

  • Xuanhua Xu

    (Central South University)

  • Shuai Huang

    (Guangdong University of Technology)

Abstract

In this paper, a consensus-based model in a large group decision making environment is proposed to achieve the group consensus among experts. This framework considers experts with different importance levels, which are expressed by the forms of linguistic variables. More specifically, the group of large-scale experts is firstly transferred into some small groups to simplify the decision making process. Following this, cluster weights can be determined by combining the group size of a cluster and the importance degrees of experts in a cluster. In the consensus process, an objective adjustment coefficient based on the expert’s importance degree is developed to modify the individual preferences, which can retain the original decision information of expert with higher importance degree as much as possible. The main characteristic of the proposed objective adjustment coefficient is that generates different coefficients for different clusters based on experts’ importance degrees. Finally, the proposed model is applied to an application example, and some detailed analysis and comparisons are given to verify the feasibility and the effectiveness of the proposed method.

Suggested Citation

  • Pei Wang & Xuanhua Xu & Shuai Huang, 2019. "An Improved Consensus-Based Model for Large Group Decision Making Problems Considering Experts with Linguistic Weighted Information," Group Decision and Negotiation, Springer, vol. 28(3), pages 619-640, June.
  • Handle: RePEc:spr:grdene:v:28:y:2019:i:3:d:10.1007_s10726-019-09615-8
    DOI: 10.1007/s10726-019-09615-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10726-019-09615-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10726-019-09615-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Zhibin & Xu, Jiuping, 2016. "Managing consistency and consensus in group decision making with hesitant fuzzy linguistic preference relations," Omega, Elsevier, vol. 65(C), pages 28-40.
    2. Fanyong Meng & Qingxian An & Xiaohong Chen, 2016. "A consistency and consensus-based method to group decision making with interval linguistic preference relations," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(11), pages 1419-1437, November.
    3. Xu, Zeshui, 2005. "Deviation measures of linguistic preference relations in group decision making," Omega, Elsevier, vol. 33(3), pages 249-254, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaohong Chen & Weiwei Zhang & Xuanhua Xu & Wenzhi Cao, 2022. "Managing Group Confidence and Consensus in Intuitionistic Fuzzy Large Group Decision-Making Based on Social Media Data Mining," Group Decision and Negotiation, Springer, vol. 31(5), pages 995-1023, October.
    2. Heidary-Dahooie, Jalil & Rafiee, Mostafa & Mohammadi, Mehdi & Meidute-Kavaliauskienė, Ieva, 2022. "Proposing a new LSGDM framework based on BWM with hesitant fuzzy information for prioritizing blockchain adoption barriers in supply chain," Technology in Society, Elsevier, vol. 71(C).
    3. Rodríguez, Rosa M. & Labella, Álvaro & Nuñez-Cacho, Pedro & Molina-Moreno, Valentin & Martínez, Luis, 2022. "A comprehensive minimum cost consensus model for large scale group decision making for circular economy measurement," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    4. Qifeng Wan & Xuanhua Xu & Xiaohong Chen & Jun Zhuang, 2020. "A Two-Stage Optimization Model for Large-Scale Group Decision-Making in Disaster Management: Minimizing Group Conflict and Maximizing Individual Satisfaction," Group Decision and Negotiation, Springer, vol. 29(5), pages 901-921, October.
    5. Tang, Ming & Liao, Huchang, 2021. "From conventional group decision making to large-scale group decision making: What are the challenges and how to meet them in big data era? A state-of-the-art survey," Omega, Elsevier, vol. 100(C).
    6. Feifei Jin & Jinpei Liu & Ligang Zhou & Luis Martínez, 2021. "Consensus-Based Linguistic Distribution Large-Scale Group Decision Making Using Statistical Inference and Regret Theory," Group Decision and Negotiation, Springer, vol. 30(4), pages 813-845, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenqi Liu & Hengjie Zhang & Haiming Liang & Cong-cong Li & Yucheng Dong, 2022. "Managing Consistency and Consensus Issues in Group Decision-Making with Self-Confident Additive Preference Relations and Without Feedback: A Nonlinear Optimization Method," Group Decision and Negotiation, Springer, vol. 31(1), pages 213-240, February.
    2. Zhang, Hengjie & Dong, Yucheng & Chiclana, Francisco & Yu, Shui, 2019. "Consensus efficiency in group decision making: A comprehensive comparative study and its optimal design," European Journal of Operational Research, Elsevier, vol. 275(2), pages 580-598.
    3. Sumin Yu & Zhijiao Du & Xuanhua Xu, 2021. "Hierarchical Punishment-Driven Consensus Model for Probabilistic Linguistic Large-Group Decision Making with Application to Global Supplier Selection," Group Decision and Negotiation, Springer, vol. 30(6), pages 1343-1372, December.
    4. Sha Fan & Hengjie Zhang & Huali Tang, 2019. "A Linguistic Hierarchy Model with Self-Confidence Preference Relations and Its Application in Co-Regulation of Food Safety in China," IJERPH, MDPI, vol. 16(16), pages 1-21, August.
    5. Wu, Xingli & Liao, Huchang, 2019. "A consensus-based probabilistic linguistic gained and lost dominance score method," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1017-1027.
    6. Fanyong Meng & Aiqing Zeng & Jie Tang & Witold Pedrycz, 2023. "Ranking Objects from Individual Linguistic Dual Hesitant Fuzzy Information in View of Optimal Model-Based Consistency and Consensus Iteration Algorithm," Group Decision and Negotiation, Springer, vol. 32(1), pages 5-44, February.
    7. Jinpei Liu & Zijie Qiang & Peng Wu & Pengcheng Du, 2023. "Multiple stage optimization driven group decision making method with interval linguistic fuzzy preference relations based on ordinal consistency and DEA cross-efficiency," Fuzzy Optimization and Decision Making, Springer, vol. 22(2), pages 309-336, June.
    8. Yong Liu & Ting Zhou & Wei-xue Diao & Jinhong Yi, 2022. "A multivariate minimum cost consensus approach for two-level group decision making," OPSEARCH, Springer;Operational Research Society of India, vol. 59(3), pages 839-861, September.
    9. Jie Tang & Fanyong Meng & Francisco Javier Cabrerizo & Enrique Herrera-Viedma, 2020. "Group Decision Making with Interval-Valued Intuitionistic Multiplicative Linguistic Preference Relations," Group Decision and Negotiation, Springer, vol. 29(1), pages 169-206, February.
    10. Pang, Jifang & Liang, Jiye, 2012. "Evaluation of the results of multi-attribute group decision-making with linguistic information," Omega, Elsevier, vol. 40(3), pages 294-301.
    11. Ni Li & Minghui Sun & Zhuming Bi & Zeya Su & Chao Wang, 2014. "A new methodology to support group decision-making for IoT-based emergency response systems," Information Systems Frontiers, Springer, vol. 16(5), pages 953-977, November.
    12. Yan, Hong-Bin & Ma, Tieju & Huynh, Van-Nam, 2017. "On qualitative multi-attribute group decision making and its consensus measure: A probability based perspective," Omega, Elsevier, vol. 70(C), pages 94-117.
    13. Zeshui Xu, 2013. "Compatibility Analysis of Intuitionistic Fuzzy Preference Relations in Group Decision Making," Group Decision and Negotiation, Springer, vol. 22(3), pages 463-482, May.
    14. Xunjie Gou & Zeshui Xu & Huchang Liao, 2019. "Hesitant Fuzzy Linguistic Possibility Degree-Based Linear Assignment Method for Multiple Criteria Decision-Making," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 35-63, January.
    15. Gong, Zaiwu & Guo, Weiwei & Słowiński, Roman, 2021. "Transaction and interaction behavior-based consensus model and its application to optimal carbon emission reduction," Omega, Elsevier, vol. 104(C).
    16. Tang, Ming & Liao, Huchang, 2021. "From conventional group decision making to large-scale group decision making: What are the challenges and how to meet them in big data era? A state-of-the-art survey," Omega, Elsevier, vol. 100(C).
    17. Meimei Xia & Zeshui Xu & Na Chen, 2013. "Some Hesitant Fuzzy Aggregation Operators with Their Application in Group Decision Making," Group Decision and Negotiation, Springer, vol. 22(2), pages 259-279, March.
    18. Wu, Zhibin & Huang, Shuai & Xu, Jiuping, 2019. "Multi-stage optimization models for individual consistency and group consensus with preference relations," European Journal of Operational Research, Elsevier, vol. 275(1), pages 182-194.
    19. Jun Liu & Xianbin Wu & Shouzhen Zeng & Tiejun Pan, 2017. "Intuitionistic Linguistic Multiple Attribute Decision-Making with Induced Aggregation Operator and Its Application to Low Carbon Supplier Selection," IJERPH, MDPI, vol. 14(12), pages 1-12, November.
    20. Jie Tang & Qingxian An & Fanyong Meng & Xiaohong Chen, 2017. "A Natural Method for Ranking Objects from Hesitant Fuzzy Preference Relations," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(06), pages 1611-1646, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:28:y:2019:i:3:d:10.1007_s10726-019-09615-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.