IDEAS home Printed from https://ideas.repec.org/a/spr/grdene/v33y2024i5d10.1007_s10726-024-09876-y.html
   My bibliography  Save this article

A Markov Chain-Based Group Consensus Method with Unknown Parameters

Author

Listed:
  • Chao Fu

    (Hefei University of Technology
    Key Laboratory of Process Optimization and Intelligent Decision-Making, Ministry of Education
    Ministry of Education Engineering Research Center for Intelligent Decision-Making & Information System Technologies)

  • Wenjun Chang

    (Hefei University of Technology
    Key Laboratory of Process Optimization and Intelligent Decision-Making, Ministry of Education
    Ministry of Education Engineering Research Center for Intelligent Decision-Making & Information System Technologies)

Abstract

Group consensus (GC) is important for generating a group solution satisfactory or acceptable to most decision-makers in a group. Its convergency usually depends on several rounds of iterations and becomes more difficult with unknown parameters because GC is usually associated with parameters. To address the GC with unknown parameters, this paper proposes a Markov chain-based GC method, in which criterion weights and expert weights are considered as parameters. Given the interval-valued assessments of decision-makers, the GC at the alternative and global levels is defined. Based on the Markov chain, a two-hierarchical randomization algorithm is designed with unknown criterion weights to determine the transition probability matrix used to generate the stable GC. To accelerate the stable GC’s convergency, criteria significantly contributing negatives to the stable GC are identified and suggestions on helping renew decision-makers’ assessments on the identified criteria are provided. On the condition that the stable GC is definitely satisfied, a GC-based two-hierarchical randomization algorithm is designed based on the Markov chain to determine the transition probability matrix for generating the stable ranking value distribution of each alternative. The proposed method is employed to analyze a development mode selection problem. It is compared with the stochastic multicriteria acceptability analysis and simple additive weighting methods based on the problem by calculation and principle.

Suggested Citation

  • Chao Fu & Wenjun Chang, 2024. "A Markov Chain-Based Group Consensus Method with Unknown Parameters," Group Decision and Negotiation, Springer, vol. 33(5), pages 1019-1048, October.
  • Handle: RePEc:spr:grdene:v:33:y:2024:i:5:d:10.1007_s10726-024-09876-y
    DOI: 10.1007/s10726-024-09876-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10726-024-09876-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10726-024-09876-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:33:y:2024:i:5:d:10.1007_s10726-024-09876-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.