IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v47y2016i15p3598-3608.html
   My bibliography  Save this article

Multi-criteria decision-making method based on a cross-entropy with interval neutrosophic sets

Author

Listed:
  • Zhang-peng Tian
  • Hong-yu Zhang
  • Jing Wang
  • Jian-qiang Wang
  • Xiao-hong Chen

Abstract

In this paper, two optimisation models are established to determine the criterion weights in multi-criteria decision-making situations where knowledge regarding the weight information is incomplete and the criterion values are interval neutrosophic numbers. The proposed approach combines interval neutrosophic sets and TOPSIS, and the closeness coefficients are expressed as interval numbers. Furthermore, the relative likelihood-based comparison relations are constructed to determine the ranking of alternatives. A fuzzy cross-entropy approach is proposed to calculate the discrimination measure between alternatives and the absolute ideal solutions, after a transformation operator has been developed to convert interval neutrosophic numbers into simplified neutrosophic numbers. Finally, an illustrative example is provided, and a comparative analysis is conducted between the approach developed in this paper and other existing methods, to verify the feasibility and effectiveness of the proposed approach.

Suggested Citation

  • Zhang-peng Tian & Hong-yu Zhang & Jing Wang & Jian-qiang Wang & Xiao-hong Chen, 2016. "Multi-criteria decision-making method based on a cross-entropy with interval neutrosophic sets," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(15), pages 3598-3608, November.
  • Handle: RePEc:taf:tsysxx:v:47:y:2016:i:15:p:3598-3608
    DOI: 10.1080/00207721.2015.1102359
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2015.1102359
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2015.1102359?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Sengupta, Atanu & Pal, Tapan Kumar, 2000. "On comparing interval numbers," European Journal of Operational Research, Elsevier, vol. 127(1), pages 28-43, November.
    3. Caballero, Rafael & Hernández-Díaz, Alfredo G. & Laguna, Manuel & Molina, Julián, 2015. "Cross entropy for multiobjective combinatorial optimization problems with linear relaxations," European Journal of Operational Research, Elsevier, vol. 243(2), pages 362-368.
    4. Liu, Bingsheng & Shen, Yinghua & Zhang, Wei & Chen, Xiaohong & Wang, Xueqing, 2015. "An interval-valued intuitionistic fuzzy principal component analysis model-based method for complex multi-attribute large-group decision-making," European Journal of Operational Research, Elsevier, vol. 245(1), pages 209-225.
    5. Macedo, Pedro & Scotto, Manuel, 2014. "Cross-entropy estimation in technical efficiency analysis," Journal of Mathematical Economics, Elsevier, vol. 54(C), pages 124-130.
    6. Editors, 2014. "International Journal of Systems Science," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(12), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao-Wen Qi & Jun-Ling Zhang & Shu-Ping Zhao & Chang-Yong Liang, 2017. "Tackling Complex Emergency Response Solutions Evaluation Problems in Sustainable Development by Fuzzy Group Decision Making Approaches with Considering Decision Hesitancy and Prioritization among Asse," IJERPH, MDPI, vol. 14(10), pages 1-35, October.
    2. Juan-juan Peng & Jian-qiang Wang & Wu-E Yang, 2017. "A multi-valued neutrosophic qualitative flexible approach based on likelihood for multi-criteria decision-making problems," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(2), pages 425-435, January.
    3. Surapati Pramanik & Shyamal Dalapati & Shariful Alam & Florentin Smarandache & Tapan Kumar Roy, 2018. "NC-Cross Entropy Based MADM Strategy in Neutrosophic Cubic Set Environment," Mathematics, MDPI, vol. 6(5), pages 1-26, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
    2. Zhou, Feng & Huang, Gordon H. & Chen, Guo-Xian & Guo, Huai-Cheng, 2009. "Enhanced-interval linear programming," European Journal of Operational Research, Elsevier, vol. 199(2), pages 323-333, December.
    3. Ammar, E.E., 2009. "On fuzzy random multiobjective quadratic programming," European Journal of Operational Research, Elsevier, vol. 193(2), pages 329-341, March.
    4. Subhashis Chatterjee & Ankur Shukla, 2017. "An Ideal Software Release Policy for an Improved Software Reliability Growth Model Incorporating Imperfect Debugging with Fault Removal Efficiency and Change Point," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(03), pages 1-21, June.
    5. Vuciterna, Rina & Thomsen, Michael & Popp, Jennie & Musliu, Arben, 2017. "Efficiency and Competitiveness of Kosovo Raspberry Producers," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252770, Southern Agricultural Economics Association.
    6. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    7. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    8. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    9. Hongyi Sun & Bingqian Zhang & Wenbin Ni, 2022. "A Hybrid Model Based on SEM and Fuzzy TOPSIS for Supplier Selection," Mathematics, MDPI, vol. 10(19), pages 1-19, September.
    10. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    11. Moina Ajmeri & Ahmad Ali, 2017. "Analytical design of modified Smith predictor for unstable second-order processes with time delay," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(8), pages 1671-1681, June.
    12. Sakawa, Masatoshi & Kato, Kosuke, 1998. "An interactive fuzzy satisficing method for structured multiobjective linear fractional programs with fuzzy numbers," European Journal of Operational Research, Elsevier, vol. 107(3), pages 575-589, June.
    13. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    14. Qiu, Ruozhen & Sun, Minghe & Lim, Yun Fong, 2017. "Optimizing (s, S) policies for multi-period inventory models with demand distribution uncertainty: Robust dynamic programing approaches," European Journal of Operational Research, Elsevier, vol. 261(3), pages 880-892.
    15. Bogdana Stanojević & Milan Stanojević & Sorin Nădăban, 2021. "Reinstatement of the Extension Principle in Approaching Mathematical Programming with Fuzzy Numbers," Mathematics, MDPI, vol. 9(11), pages 1-16, June.
    16. Majumdar, J. & Bhunia, A.K., 2007. "Elitist genetic algorithm for assignment problem with imprecise goal," European Journal of Operational Research, Elsevier, vol. 177(2), pages 684-692, March.
    17. Svajone Bekesiene & Serhii Mashchenko, 2023. "On Nash Equilibria in a Finite Game for Fuzzy Sets of Strategies," Mathematics, MDPI, vol. 11(22), pages 1-12, November.
    18. Qian-Yun Tan & Cui-Ping Wei & Qi Liu & Xiang-Qian Feng, 2016. "The Hesitant Fuzzy Linguistic TOPSIS Method Based on Novel Information Measures," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-22, October.
    19. Mourad Kchaou & Ahmed El-Hajjaji, 2017. "Resilient sliding mode control for discrete-time descriptor fuzzy systems with multiple time delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(2), pages 288-301, January.
    20. Changyin Sun & Qing Wang & Yao Yu, 2017. "Robust output containment control of multi-agent systems with unknown heterogeneous nonlinear uncertainties in directed networks," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(6), pages 1173-1181, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:47:y:2016:i:15:p:3598-3608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.