IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v281y2020i2p316-331.html
   My bibliography  Save this article

A Cost Consensus Metric for Consensus Reaching Processes based on a comprehensive minimum cost model

Author

Listed:
  • Labella, Álvaro
  • Liu, Hongbin
  • Rodríguez, Rosa M.
  • Martínez, Luis

Abstract

Consensus Reaching Processes (CRPs) have recently acquired much more importance within Group Decision Making real-world problems because of the demand of either agreed or consensual solutions in such decision problems. Hence, many CRP models have been proposed in the specialized literature, but so far there is not any clear objective to evaluate their performance in order to choose the best CRP model. Therefore, this research aims at developing an objective metric based on the cost of modifying experts’ opinions to evaluate CRPs in GDM problems. First, a new and comprehensive minimum cost consensus model that considers distance to global opinion and consensus degree is presented. This model obtains an optimal agreed solution with minimum cost but this solution is not dependent on experts’ opinion evolution. Therefore, this optimal solution will be used to evaluate CRPs in which experts’ opinion evolution is considered to achieve an agreed solution for the GDM. Eventually, a comparative performance analysis of different CRPs on a GDM problem will be provided to show the utility and validity of this cost metric.

Suggested Citation

  • Labella, Álvaro & Liu, Hongbin & Rodríguez, Rosa M. & Martínez, Luis, 2020. "A Cost Consensus Metric for Consensus Reaching Processes based on a comprehensive minimum cost model," European Journal of Operational Research, Elsevier, vol. 281(2), pages 316-331.
  • Handle: RePEc:eee:ejores:v:281:y:2020:i:2:p:316-331
    DOI: 10.1016/j.ejor.2019.08.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719307003
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.08.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gong, Zaiwu & Zhang, Huanhuan & Forrest, Jeffrey & Li, Lianshui & Xu, Xiaoxia, 2015. "Two consensus models based on the minimum cost and maximum return regarding either all individuals or one individual," European Journal of Operational Research, Elsevier, vol. 240(1), pages 183-192.
    2. Wu, Zhibin & Xu, Jiuping, 2016. "Managing consistency and consensus in group decision making with hesitant fuzzy linguistic preference relations," Omega, Elsevier, vol. 65(C), pages 28-40.
    3. Kacprzyk, Janusz & Fedrizzi, Mario, 1988. "A `soft' measure of consensus in the setting of partial (fuzzy) preferences," European Journal of Operational Research, Elsevier, vol. 34(3), pages 316-325, March.
    4. Bernard Baets & János Fodor, 1997. "Twenty years of fuzzy preference structures (1978–1997)," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 20(1), pages 45-66, June.
    5. Zhang, Huanhuan & Kou, Gang & Peng, Yi, 2019. "Soft consensus cost models for group decision making and economic interpretations," European Journal of Operational Research, Elsevier, vol. 277(3), pages 964-980.
    6. Cheng, Dong & Zhou, Zhili & Cheng, Faxin & Zhou, Yanfang & Xie, Yujing, 2018. "Modeling the minimum cost consensus problem in an asymmetric costs context," European Journal of Operational Research, Elsevier, vol. 270(3), pages 1122-1137.
    7. Zhang, Hengjie & Dong, Yucheng & Chiclana, Francisco & Yu, Shui, 2019. "Consensus efficiency in group decision making: A comprehensive comparative study and its optimal design," European Journal of Operational Research, Elsevier, vol. 275(2), pages 580-598.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feifei Jin & Chang Li & Jinpei Liu & Ligang Zhou, 2021. "Distribution Linguistic Fuzzy Group Decision Making Based on Consistency and Consensus Analysis," Mathematics, MDPI, vol. 9(19), pages 1-19, October.
    2. Tang, Ming & Liao, Huchang, 2024. "Group efficiency and individual fairness tradeoff in making wise decisions," Omega, Elsevier, vol. 124(C).
    3. Dombi, József & Jónás, Tamás, 2024. "Consensus measures based on a fuzzy concept," European Journal of Operational Research, Elsevier, vol. 315(2), pages 642-653.
    4. Cheng, Dong & Yuan, Yuxiang & Wu, Yong & Hao, Tiantian & Cheng, Faxin, 2022. "Maximum satisfaction consensus with budget constraints considering individual tolerance and compromise limit behaviors," European Journal of Operational Research, Elsevier, vol. 297(1), pages 221-238.
    5. Dong Cheng & Yong Wu & Yuxiang Yuan & Faxin Cheng & Dianwei Chen, 2024. "Modeling the Maximum Perceived Utility Consensus Based on Prospect Theory," Group Decision and Negotiation, Springer, vol. 33(5), pages 951-975, October.
    6. Yuanming Li & Ying Ji & Shaojian Qu, 2022. "Consensus Building for Uncertain Large-Scale Group Decision-Making Based on the Clustering Algorithm and Robust Discrete Optimization," Group Decision and Negotiation, Springer, vol. 31(2), pages 453-489, April.
    7. Meng, Fan-Yong & Gong, Zai-Wu & Pedrycz, Witold & Chu, Jun-Fei, 2023. "Selfish-dilemma consensus analysis for group decision making in the perspective of cooperative game theory," European Journal of Operational Research, Elsevier, vol. 308(1), pages 290-305.
    8. Meng, Fan-Yong & Zhao, Deng-Yu & Gong, Zai-Wu & Chu, Jun-Fei & Pedrycz, Witold & Yuan, Zhe, 2024. "Consensus adjustment for multi-attribute group decision making based on cross-allocation," European Journal of Operational Research, Elsevier, vol. 318(1), pages 200-216.
    9. Rodríguez, Rosa M. & Labella, Álvaro & Nuñez-Cacho, Pedro & Molina-Moreno, Valentin & Martínez, Luis, 2022. "A comprehensive minimum cost consensus model for large scale group decision making for circular economy measurement," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    10. Guo, Weiwei & Gong, Zaiwu & Zhang, Wei-Guo & Xu, Yanxin, 2023. "Minimum cost consensus modeling under dynamic feedback regulation mechanism considering consensus principle and tolerance level," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1279-1295.
    11. Gong, Zaiwu & Guo, Weiwei & Słowiński, Roman, 2021. "Transaction and interaction behavior-based consensus model and its application to optimal carbon emission reduction," Omega, Elsevier, vol. 104(C).
    12. Zhi-Jiao Du & Zhi-Xiang Chen & Su-Min Yu, 2021. "Improved Failure Mode and Effect Analysis: Implementing Risk Assessment and Conflict Risk Mitigation with Probabilistic Linguistic Information," Mathematics, MDPI, vol. 9(11), pages 1-20, May.
    13. Meng, Fanyong & Tang, Jie & An, Qingxian, 2023. "Cooperative game based two-stage consensus adjustment mechanism for large-scale group decision making," Omega, Elsevier, vol. 117(C).
    14. García-Zamora, Diego & Dutta, Bapi & Massanet, Sebastia & Riera, Juan Vicente & Martínez, Luis, 2023. "Relationship between the distance consensus and the consensus degree in comprehensive minimum cost consensus models: A polytope-based analysis," European Journal of Operational Research, Elsevier, vol. 306(2), pages 764-776.
    15. Ying Ji & Huanhuan Li & Huijie Zhang, 2022. "Risk-Averse Two-Stage Stochastic Minimum Cost Consensus Models with Asymmetric Adjustment Cost," Group Decision and Negotiation, Springer, vol. 31(2), pages 261-291, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Dong & Yuan, Yuxiang & Wu, Yong & Hao, Tiantian & Cheng, Faxin, 2022. "Maximum satisfaction consensus with budget constraints considering individual tolerance and compromise limit behaviors," European Journal of Operational Research, Elsevier, vol. 297(1), pages 221-238.
    2. Zhang, Bowen & Dong, Yucheng & Zhang, Hengjie & Pedrycz, Witold, 2020. "Consensus mechanism with maximum-return modifications and minimum-cost feedback: A perspective of game theory," European Journal of Operational Research, Elsevier, vol. 287(2), pages 546-559.
    3. Meng, Fan-Yong & Gong, Zai-Wu & Pedrycz, Witold & Chu, Jun-Fei, 2023. "Selfish-dilemma consensus analysis for group decision making in the perspective of cooperative game theory," European Journal of Operational Research, Elsevier, vol. 308(1), pages 290-305.
    4. Gong, Zaiwu & Guo, Weiwei & Słowiński, Roman, 2021. "Transaction and interaction behavior-based consensus model and its application to optimal carbon emission reduction," Omega, Elsevier, vol. 104(C).
    5. Zhang, Hengjie & Dong, Yucheng & Chiclana, Francisco & Yu, Shui, 2019. "Consensus efficiency in group decision making: A comprehensive comparative study and its optimal design," European Journal of Operational Research, Elsevier, vol. 275(2), pages 580-598.
    6. Guo, Weiwei & Gong, Zaiwu & Zhang, Wei-Guo & Xu, Yanxin, 2023. "Minimum cost consensus modeling under dynamic feedback regulation mechanism considering consensus principle and tolerance level," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1279-1295.
    7. Tang, Ming & Liao, Huchang & Xu, Jiuping & Streimikiene, Dalia & Zheng, Xiaosong, 2020. "Adaptive consensus reaching process with hybrid strategies for large-scale group decision making," European Journal of Operational Research, Elsevier, vol. 282(3), pages 957-971.
    8. Wu, Zhibin & Huang, Shuai & Xu, Jiuping, 2019. "Multi-stage optimization models for individual consistency and group consensus with preference relations," European Journal of Operational Research, Elsevier, vol. 275(1), pages 182-194.
    9. Jana Goers & Graham Horton, 2024. "On the Combinatorial Acceptability Entropy Consensus Metric for Multi-Criteria Group Decisions," Group Decision and Negotiation, Springer, vol. 33(5), pages 1247-1268, October.
    10. Xiangrui Chao & Yucheng Dong & Gang Kou & Yi Peng, 2022. "How to determine the consensus threshold in group decision making: a method based on efficiency benchmark using benefit and cost insight," Annals of Operations Research, Springer, vol. 316(1), pages 143-177, September.
    11. Mingwei Wang & Decui Liang & Zeshui Xu & Wen Cao, 2022. "Consensus reaching with the externality effect of social network for three-way group decisions," Annals of Operations Research, Springer, vol. 315(2), pages 707-745, August.
    12. Tang, Ming & Liao, Huchang, 2021. "From conventional group decision making to large-scale group decision making: What are the challenges and how to meet them in big data era? A state-of-the-art survey," Omega, Elsevier, vol. 100(C).
    13. Dong Cheng & Yong Wu & Yuxiang Yuan & Faxin Cheng & Dianwei Chen, 2024. "Modeling the Maximum Perceived Utility Consensus Based on Prospect Theory," Group Decision and Negotiation, Springer, vol. 33(5), pages 951-975, October.
    14. Zhang, Huanhuan & Kou, Gang & Peng, Yi, 2019. "Soft consensus cost models for group decision making and economic interpretations," European Journal of Operational Research, Elsevier, vol. 277(3), pages 964-980.
    15. Li, Huanhuan & Ji, Ying & Ding, Jieyu & Qu, Shaojian & Zhang, Huijie & Li, Yuanming & Liu, Yubing, 2024. "Robust two-stage optimization consensus models with uncertain costs," European Journal of Operational Research, Elsevier, vol. 317(3), pages 977-1002.
    16. Li, Ying & Liu, Peide & Li, Gang, 2023. "An asymmetric cost consensus based failure mode and effect analysis method with personalized risk attitude information," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    17. Sha Fan & Hengjie Zhang & Huali Tang, 2019. "A Linguistic Hierarchy Model with Self-Confidence Preference Relations and Its Application in Co-Regulation of Food Safety in China," IJERPH, MDPI, vol. 16(16), pages 1-21, August.
    18. Wu, Xingli & Liao, Huchang, 2019. "A consensus-based probabilistic linguistic gained and lost dominance score method," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1017-1027.
    19. Xuyuan Zhang & Hailin Liang & Shaojian Qu, 2024. "Robust Consensus Modeling: Concerning Consensus Fairness and Efficiency with Uncertain Costs," Mathematics, MDPI, vol. 12(8), pages 1-31, April.
    20. Zhen Zhang & Zhuolin Li, 2023. "Consensus-based TOPSIS-Sort-B for multi-criteria sorting in the context of group decision-making," Annals of Operations Research, Springer, vol. 325(2), pages 911-938, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:281:y:2020:i:2:p:316-331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.