IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v96y2023i3d10.1140_epjb_s10051-023-00507-0.html
   My bibliography  Save this article

Ab initio study on the electromechanical response of Janus transition metal dihalide nanotubes

Author

Listed:
  • Arpit Bhardwaj

    (Georgia Institute of Technology)

  • Phanish Suryanarayana

    (Georgia Institute of Technology)

Abstract

We study the electronic response of Janus transition metal dihalide (TMH) nanotubes to mechanical deformations using Kohn–Sham density functional theory. Specifically, considering twelve armchair and zigzag Janus TMH nanotubes that are expected to be stable from the phonon analysis of flat monolayer counterparts, we first compute their equilibrium diameters and then determine the variation in bandgap and effective mass of charge carriers with the application of tensile and torsional deformations. We find that the nanotubes undergo a linear and quadratic decrease in bandgap with tensile and shear strain, respectively. In addition, there is a continual increase and decrease in the effective mass of electrons and holes, respectively. We show that for a given strain, the change in bandgap for the armchair nanotubes can be correlated with the transition metal’s in-plane d orbital’s contribution to the projected density of states at the bottom of the conduction band. Graphic abstract

Suggested Citation

  • Arpit Bhardwaj & Phanish Suryanarayana, 2023. "Ab initio study on the electromechanical response of Janus transition metal dihalide nanotubes," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(3), pages 1-8, March.
  • Handle: RePEc:spr:eurphb:v:96:y:2023:i:3:d:10.1140_epjb_s10051-023-00507-0
    DOI: 10.1140/epjb/s10051-023-00507-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-023-00507-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-023-00507-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y. J. Zhang & T. Ideue & M. Onga & F. Qin & R. Suzuki & A. Zak & R. Tenne & J. H. Smet & Y. Iwasa, 2019. "Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes," Nature, Nature, vol. 570(7761), pages 349-353, June.
    2. Geoffroy Hautier & Anna Miglio & Gerbrand Ceder & Gian-Marco Rignanese & Xavier Gonze, 2013. "Identification and design principles of low hole effective mass p-type transparent conducting oxides," Nature Communications, Nature, vol. 4(1), pages 1-7, October.
    3. Arpit Bhardwaj & Phanish Suryanarayana, 2022. "Strain engineering of Janus transition metal dichalcogenide nanotubes: an ab initio study," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(3), pages 1-9, March.
    4. Arpit Bhardwaj & Phanish Suryanarayana, 2022. "Elastic properties of Janus transition metal dichalcogenide nanotubes from first principles," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(1), pages 1-8, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arpit Bhardwaj & Phanish Suryanarayana, 2022. "Strain engineering of Janus transition metal dichalcogenide nanotubes: an ab initio study," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(3), pages 1-9, March.
    2. Shouheng Chen & Zihan Liang & Jinshui Miao & Xiang-Long Yu & Shuo Wang & Yule Zhang & Han Wang & Yun Wang & Chun Cheng & Gen Long & Taihong Wang & Lin Wang & Han Zhang & Xiaolong Chen, 2024. "Infrared optoelectronics in twisted black phosphorus," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Yongheng Zhou & Xin Zhou & Xiang-Long Yu & Zihan Liang & Xiaoxu Zhao & Taihong Wang & Jinshui Miao & Xiaolong Chen, 2024. "Giant intrinsic photovoltaic effect in one-dimensional van der Waals grain boundaries," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Zihan Liang & Xin Zhou & Le Zhang & Xiang-Long Yu & Yan Lv & Xuefen Song & Yongheng Zhou & Han Wang & Shuo Wang & Taihong Wang & Perry Ping Shum & Qian He & Yanjun Liu & Chao Zhu & Lin Wang & Xiaolong, 2023. "Strong bulk photovoltaic effect in engineered edge-embedded van der Waals structures," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Zhouxiaosong Zeng & Zhiqiang Tian & Yufan Wang & Cuihuan Ge & Fabian Strauß & Kai Braun & Patrick Michel & Lanyu Huang & Guixian Liu & Dong Li & Marcus Scheele & Mingxing Chen & Anlian Pan & Xiao Wang, 2024. "Dual polarization-enabled ultrafast bulk photovoltaic response in van der Waals heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Abderrahime Sekkat & Maciej Oskar Liedke & Viet Huong Nguyen & Maik Butterling & Federico Baiutti & Juan de Dios Sirvent Veru & Matthieu Weber & Laetitia Rapenne & Daniel Bellet & Guy Chichignoud & An, 2022. "Chemical deposition of Cu2O films with ultra-low resistivity: correlation with the defect landscape," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Yan Sun & Shuting Xu & Zheqi Xu & Jiamin Tian & Mengmeng Bai & Zhiying Qi & Yue Niu & Hein Htet Aung & Xiaolu Xiong & Junfeng Han & Cuicui Lu & Jianbo Yin & Sheng Wang & Qing Chen & Reshef Tenne & All, 2022. "Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Pin Wang & Mengfan Xue & Dongjian Jiang & Yanliang Yang & Junzhe Zhang & Hongzheng Dong & Gengzhi Sun & Yingfang Yao & Wenjun Luo & Zhigang Zou, 2022. "Photovoltage memory effect in a portable Faradaic junction solar rechargeable device," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Liangting Ye & Wenju Zhou & Dajian Huang & Xiao Jiang & Qiangbing Guo & Xinyu Cao & Shaohua Yan & Xinyu Wang & Donghan Jia & Dequan Jiang & Yonggang Wang & Xiaoqiang Wu & Xiao Zhang & Yang Li & Hechan, 2023. "Manipulation of nonlinear optical responses in layered ferroelectric niobium oxide dihalides," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Xiaoyi Xie & Pengliang Leng & Zhenyu Ding & Jinshan Yang & Jingyi Yan & Junchen Zhou & Zihan Li & Linfeng Ai & Xiangyu Cao & Zehao Jia & Yuda Zhang & Minhao Zhao & Wenguang Zhu & Yang Gao & Shaoming D, 2024. "Surface photogalvanic effect in Ag2Te," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Mingjin Dai & Chongwu Wang & Fangyuan Sun & Qi Jie Wang, 2024. "On-chip photodetection of angular momentums of vortex structured light," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. L. Cabezón & L. G. B. Ruiz & D. Criado-Ramón & E. J. Gago & M. C. Pegalajar, 2022. "Photovoltaic Energy Production Forecasting through Machine Learning Methods: A Scottish Solar Farm Case Study," Energies, MDPI, vol. 15(22), pages 1-14, November.
    13. Bumseop Kim & Noejung Park & Jeongwoo Kim, 2022. "Giant bulk photovoltaic effect driven by the wall-to-wall charge shift in WS2 nanotubes," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:96:y:2023:i:3:d:10.1140_epjb_s10051-023-00507-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.