IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33118-x.html
   My bibliography  Save this article

Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system

Author

Listed:
  • Yan Sun

    (Beijing Institute of Technology)

  • Shuting Xu

    (Beijing Institute of Technology)

  • Zheqi Xu

    (Beijing Institute of Technology)

  • Jiamin Tian

    (Peking University)

  • Mengmeng Bai

    (Beijing Institute of Technology)

  • Zhiying Qi

    (Beijing Institute of Technology)

  • Yue Niu

    (Beijing Institute of Technology)

  • Hein Htet Aung

    (Beijing Institute of Technology)

  • Xiaolu Xiong

    (Beijing Institute of Technology)

  • Junfeng Han

    (Beijing Institute of Technology)

  • Cuicui Lu

    (Beijing Institute of Technology)

  • Jianbo Yin

    (Beijing Graphene Institute)

  • Sheng Wang

    (Peking University)

  • Qing Chen

    (Peking University)

  • Reshef Tenne

    (Weizmann Institute of Science)

  • Alla Zak

    (Holon Institute of Technology)

  • Yao Guo

    (Beijing Institute of Technology)

Abstract

Intelligent materials with adaptive response to external stimulation lay foundation to integrate functional systems at the material level. Here, with experimental observation and numerical simulation, we report a delicate nano-electro-mechanical-opto-system naturally embedded in individual multiwall tungsten disulfide nanotubes, which generates a distinct form of in-plane van der Waals sliding ferroelectricity from the unique combination of superlubricity and piezoelectricity. The sliding ferroelectricity enables programmable photovoltaic effect using the multiwall tungsten disulfide nanotube as photovoltaic random-access memory. A complete “four-in-one” artificial vision system that synchronously achieves full functions of detecting, processing, memorizing, and powering is integrated into the nanotube devices. Both labeled supervised learning and unlabeled reinforcement learning algorithms are executable in the artificial vision system to achieve self-driven image recognition. This work provides a distinct strategy to create ferroelectricity in van der Waals materials, and demonstrates how intelligent materials can push electronic system integration at the material level.

Suggested Citation

  • Yan Sun & Shuting Xu & Zheqi Xu & Jiamin Tian & Mengmeng Bai & Zhiying Qi & Yue Niu & Hein Htet Aung & Xiaolu Xiong & Junfeng Han & Cuicui Lu & Jianbo Yin & Sheng Wang & Qing Chen & Reshef Tenne & All, 2022. "Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33118-x
    DOI: 10.1038/s41467-022-33118-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33118-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33118-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael Urbakh & Joseph Klafter & Delphine Gourdon & Jacob Israelachvili, 2004. "The nonlinear nature of friction," Nature, Nature, vol. 430(6999), pages 525-528, July.
    2. C. Kaspar & B. J. Ravoo & W. G. Wiel & S. V. Wegner & W. H. P. Pernice, 2021. "The rise of intelligent matter," Nature, Nature, vol. 594(7863), pages 345-355, June.
    3. Bumseop Kim & Noejung Park & Jeongwoo Kim, 2022. "Giant bulk photovoltaic effect driven by the wall-to-wall charge shift in WS2 nanotubes," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Michael Hoffmann & Franz P. G. Fengler & Melanie Herzig & Terence Mittmann & Benjamin Max & Uwe Schroeder & Raluca Negrea & Pintilie Lucian & Stefan Slesazeck & Thomas Mikolajick, 2019. "Unveiling the double-well energy landscape in a ferroelectric layer," Nature, Nature, vol. 565(7740), pages 464-467, January.
    5. Y. J. Zhang & T. Ideue & M. Onga & F. Qin & R. Suzuki & A. Zak & R. Tenne & J. H. Smet & Y. Iwasa, 2019. "Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes," Nature, Nature, vol. 570(7761), pages 349-353, June.
    6. Zhiren Zheng & Qiong Ma & Zhen Bi & Sergio Barrera & Ming-Hao Liu & Nannan Mao & Yang Zhang & Natasha Kiper & Kenji Watanabe & Takashi Taniguchi & Jing Kong & William A. Tisdale & Ray Ashoori & Nuh Ge, 2020. "Unconventional ferroelectricity in moiré heterostructures," Nature, Nature, vol. 588(7836), pages 71-76, December.
    7. Oded Hod & Ernst Meyer & Quanshui Zheng & Michael Urbakh, 2018. "Structural superlubricity and ultralow friction across the length scales," Nature, Nature, vol. 563(7732), pages 485-492, November.
    8. Dmitri B. Strukov & Gregory S. Snider & Duncan R. Stewart & R. Stanley Williams, 2008. "The missing memristor found," Nature, Nature, vol. 453(7191), pages 80-83, May.
    9. Wenzhuo Wu & Lei Wang & Yilei Li & Fan Zhang & Long Lin & Simiao Niu & Daniel Chenet & Xian Zhang & Yufeng Hao & Tony F. Heinz & James Hone & Zhong Lin Wang, 2014. "Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics," Nature, Nature, vol. 514(7523), pages 470-474, October.
    10. Lukas Mennel & Joanna Symonowicz & Stefan Wachter & Dmitry K. Polyushkin & Aday J. Molina-Mendoza & Thomas Mueller, 2020. "Ultrafast machine vision with 2D material neural network image sensors," Nature, Nature, vol. 579(7797), pages 62-66, March.
    11. C. R. Woods & P. Ares & H. Nevison-Andrews & M. J. Holwill & R. Fabregas & F. Guinea & A. K. Geim & K. S. Novoselov & N. R. Walet & L. Fumagalli, 2021. "Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    12. Rui Guo & Lu You & Yang Zhou & Zhi Shiuh Lim & Xi Zou & Lang Chen & R. Ramesh & Junling Wang, 2013. "Non-volatile memory based on the ferroelectric photovoltaic effect," Nature Communications, Nature, vol. 4(1), pages 1-5, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongyang Yang & Jing Liang & Jingda Wu & Yunhuan Xiao & Jerry I. Dadap & Kenji Watanabe & Takashi Taniguchi & Ziliang Ye, 2024. "Non-volatile electrical polarization switching via domain wall release in 3R-MoS2 bilayer," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zihan Liang & Xin Zhou & Le Zhang & Xiang-Long Yu & Yan Lv & Xuefen Song & Yongheng Zhou & Han Wang & Shuo Wang & Taihong Wang & Perry Ping Shum & Qian He & Yanjun Liu & Chao Zhu & Lin Wang & Xiaolong, 2023. "Strong bulk photovoltaic effect in engineered edge-embedded van der Waals structures," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Jing Ding & Hanxiao Xiang & Wenqiang Zhou & Naitian Liu & Qianmei Chen & Xinjie Fang & Kangyu Wang & Linfeng Wu & Kenji Watanabe & Takashi Taniguchi & Na Xin & Shuigang Xu, 2024. "Engineering band structures of two-dimensional materials with remote moiré ferroelectricity," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Ke Yang & Yanghao Wang & Pek Jun Tiw & Chaoming Wang & Xiaolong Zou & Rui Yuan & Chang Liu & Ge Li & Chen Ge & Si Wu & Teng Zhang & Ru Huang & Yuchao Yang, 2024. "High-order sensory processing nanocircuit based on coupled VO2 oscillators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Yue Niu & Lei Li & Zhiying Qi & Hein Htet Aung & Xinyi Han & Reshef Tenne & Yugui Yao & Alla Zak & Yao Guo, 2023. "0D van der Waals interfacial ferroelectricity," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Ming Lv & Jiulong Wang & Ming Tian & Neng Wan & Wenyi Tong & Chungang Duan & Jiamin Xue, 2024. "Multiresistance states in ferro- and antiferroelectric trilayer boron nitride," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Ruirui Niu & Zhuoxian Li & Xiangyan Han & Zhuangzhuang Qu & Dongdong Ding & Zhiyu Wang & Qianling Liu & Tianyao Liu & Chunrui Han & Kenji Watanabe & Takashi Taniguchi & Menghao Wu & Qi Ren & Xueyun Wa, 2022. "Giant ferroelectric polarization in a bilayer graphene heterostructure," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Shuai Zhang & Yang Liu & Zhiyuan Sun & Xinzhong Chen & Baichang Li & S. L. Moore & Song Liu & Zhiying Wang & S. E. Rossi & Ran Jing & Jordan Fonseca & Birui Yang & Yinming Shao & Chun-Ying Huang & Tak, 2023. "Visualizing moiré ferroelectricity via plasmons and nano-photocurrent in graphene/twisted-WSe2 structures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. He-Shan Zhang & Xue-Mei Dong & Zi-Cheng Zhang & Ze-Pu Zhang & Chao-Yi Ban & Zhe Zhou & Cheng Song & Shi-Qi Yan & Qian Xin & Ju-Qing Liu & Yin-Xiang Li & Wei Huang, 2022. "Co-assembled perylene/graphene oxide photosensitive heterobilayer for efficient neuromorphics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Daniel Bennett & Gaurav Chaudhary & Robert-Jan Slager & Eric Bousquet & Philippe Ghosez, 2023. "Polar meron-antimeron networks in strained and twisted bilayers," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    10. Yuyan Zhu & Yang Wang & Xingchen Pang & Yongbo Jiang & Xiaoxian Liu & Qing Li & Zhen Wang & Chunsen Liu & Weida Hu & Peng Zhou, 2024. "Non-volatile 2D MoS2/black phosphorus heterojunction photodiodes in the near- to mid-infrared region," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Min, Fuhong & Zhang, Wen & Ji, Ziyi & Zhang, Lei, 2021. "Switching dynamics of a non-autonomous FitzHugh-Nagumo circuit with piecewise-linear flux-controlled memristor," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    12. Feng, Liang & Hu, Cheng & Yu, Juan & Jiang, Haijun & Wen, Shiping, 2021. "Fixed-time Synchronization of Coupled Memristive Complex-valued Neural Networks," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    13. Hu, Yongbing & Li, Qian & Ding, Dawei & Jiang, Li & Yang, Zongli & Zhang, Hongwei & Zhang, Zhixin, 2021. "Multiple coexisting analysis of a fractional-order coupled memristive system and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    14. Li Chen & Cong Lin & Diwei Shi & Xuanyu Huang & Quanshui Zheng & Jinhui Nie & Ming Ma, 2023. "Fully automatic transfer and measurement system for structural superlubric materials," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Yan, Dengwei & Wang, Lidan & Duan, Shukai & Chen, Jiaojiao & Chen, Jiahao, 2021. "Chaotic Attractors Generated by a Memristor-Based Chaotic System and Julia Fractal," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    16. Luo, Mengzhuo & Cheng, Jun & Liu, Xinzhi & Zhong, Shouming, 2019. "An extended synchronization analysis for memristor-based coupled neural networks via aperiodically intermittent control," Applied Mathematics and Computation, Elsevier, vol. 344, pages 163-182.
    17. Michael Hoffmann & Zheng Wang & Nujhat Tasneem & Ahmad Zubair & Prasanna Venkatesan Ravindran & Mengkun Tian & Anthony Arthur Gaskell & Dina Triyoso & Steven Consiglio & Kandabara Tapily & Robert Clar, 2022. "Antiferroelectric negative capacitance from a structural phase transition in zirconia," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Liu, Shuxin & Yu, Yongguang & Zhang, Shuo & Zhang, Yuting, 2018. "Robust stability of fractional-order memristor-based Hopfield neural networks with parameter disturbances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 845-854.
    19. Tao Guo & Shasha Li & Y. Norman Zhou & Wei D. Lu & Yong Yan & Yimin A. Wu, 2024. "Interspecies-chimera machine vision with polarimetry for real-time navigation and anti-glare pattern recognition," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Zhang, Ge & Ma, Jun & Alsaedi, Ahmed & Ahmad, Bashir & Alzahrani, Faris, 2018. "Dynamical behavior and application in Josephson Junction coupled by memristor," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 290-299.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33118-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.