Photovoltaic Energy Production Forecasting through Machine Learning Methods: A Scottish Solar Farm Case Study
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Dudek, Grzegorz, 2016. "Multilayer perceptron for GEFCom2014 probabilistic electricity price forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1057-1060.
- Y. J. Zhang & T. Ideue & M. Onga & F. Qin & R. Suzuki & A. Zak & R. Tenne & J. H. Smet & Y. Iwasa, 2019. "Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes," Nature, Nature, vol. 570(7761), pages 349-353, June.
- John F. Geisz & Ryan M. France & Kevin L. Schulte & Myles A. Steiner & Andrew G. Norman & Harvey L. Guthrey & Matthew R. Young & Tao Song & Thomas Moriarty, 2020. "Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration," Nature Energy, Nature, vol. 5(4), pages 326-335, April.
- J. R. S. Iruela & L. G. B. Ruiz & M. I. Capel & M. C. Pegalajar, 2021. "A TensorFlow Approach to Data Analysis for Time Series Forecasting in the Energy-Efficiency Realm," Energies, MDPI, vol. 14(13), pages 1-22, July.
- Francisco Javier Duque-Pintor & Manuel Jesús Fernández-Gómez & Alicia Troncoso & Francisco Martínez-Álvarez, 2016. "A New Methodology Based on Imbalanced Classification for Predicting Outliers in Electricity Demand Time Series," Energies, MDPI, vol. 9(9), pages 1-10, September.
- Nassar, Nedal T. & Wilburn, David R. & Goonan, Thomas G., 2016. "Byproduct metal requirements for U.S. wind and solar photovoltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios," Applied Energy, Elsevier, vol. 183(C), pages 1209-1226.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Domenico Palladino & Nicolandrea Calabrese, 2023. "Energy Planning of Renewable Energy Sources in an Italian Context: Energy Forecasting Analysis of Photovoltaic Systems in the Residential Sector," Energies, MDPI, vol. 16(7), pages 1-28, March.
- Mateusz Sumorek & Adam Idzkowski, 2023. "Time Series Forecasting for Energy Production in Stand-Alone and Tracking Photovoltaic Systems Based on Historical Measurement Data," Energies, MDPI, vol. 16(17), pages 1-23, September.
- L. G. B. Ruiz & M. C. Pegalajar, 2023. "Advances in Energy Efficiency through Neural-Network-Based Models," Energies, MDPI, vol. 16(5), pages 1-3, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- J. R. S. Iruela & L. G. B. Ruiz & M. I. Capel & M. C. Pegalajar, 2021. "A TensorFlow Approach to Data Analysis for Time Series Forecasting in the Energy-Efficiency Realm," Energies, MDPI, vol. 14(13), pages 1-22, July.
- Grzegorz Marcjasz & Tomasz Serafin & Rafał Weron, 2018.
"Selection of Calibration Windows for Day-Ahead Electricity Price Forecasting,"
Energies, MDPI, vol. 11(9), pages 1-20, September.
- Grzegorz Marcjasz & Tomasz Serafin & Rafal Weron, 2018. "Selection of calibration windows for day-ahead electricity price forecasting," HSC Research Reports HSC/18/06, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Nowotarski, Jakub & Weron, Rafał, 2018.
"Recent advances in electricity price forecasting: A review of probabilistic forecasting,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
- Jakub Nowotarski & Rafal Weron, 2016. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," HSC Research Reports HSC/16/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Carlo Fezzi & Luca Mosetti, 2018. "Size matters: Estimation sample length and electricity price forecasting accuracy," DEM Working Papers 2018/10, Department of Economics and Management.
- Alessio Bosio & Gianluca Foti & Stefano Pasini & Donato Spoltore, 2023. "A Review on the Fundamental Properties of Sb 2 Se 3 -Based Thin Film Solar Cells," Energies, MDPI, vol. 16(19), pages 1-28, September.
- Shouheng Chen & Zihan Liang & Jinshui Miao & Xiang-Long Yu & Shuo Wang & Yule Zhang & Han Wang & Yun Wang & Chun Cheng & Gen Long & Taihong Wang & Lin Wang & Han Zhang & Xiaolong Chen, 2024. "Infrared optoelectronics in twisted black phosphorus," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- André Månberger, 2021. "Reduced Use of Fossil Fuels can Reduce Supply of Critical Resources," Biophysical Economics and Resource Quality, Springer, vol. 6(2), pages 1-15, June.
- Yongheng Zhou & Xin Zhou & Xiang-Long Yu & Zihan Liang & Xiaoxu Zhao & Taihong Wang & Jinshui Miao & Xiaolong Chen, 2024. "Giant intrinsic photovoltaic effect in one-dimensional van der Waals grain boundaries," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
- Rao Fu & Kun Peng & Peng Wang & Honglin Zhong & Bin Chen & Pengfei Zhang & Yiyi Zhang & Dongyang Chen & Xi Liu & Kuishuang Feng & Jiashuo Li, 2023. "Tracing metal footprints via global renewable power value chains," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Zhou, Mei-Jing & Huang, Jian-Bai & Chen, Jin-Yu, 2022. "Time and frequency spillovers between political risk and the stock returns of China's rare earths," Resources Policy, Elsevier, vol. 75(C).
- Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.
- Alexander Ryota Keeley & Ken’ichi Matsumoto & Kenta Tanaka & Yogi Sugiawan & Shunsuke Managi, 2021.
"The Impact of Renewable Energy Generation on the Spot Market Price in Germany: Ex-Post Analysis using Boosting Method,"
The Energy Journal, , vol. 42(1_suppl), pages 1-22, June.
- Alexander Ryota Keeley & Ken’ichi Matsumoto & Kenta Tanaka & Yogi Sugiawan & Shunsuke Managi, 2020. "The Impact of Renewable Energy Generation on the Spot Market Price in Germany: Ex-Post Analysis using Boosting Method," The Energy Journal, , vol. 41(1_suppl), pages 119-140, June.
- Alexander Ryota Keeley, Kenichi Matsumoto, Kenta Tanaka, Yogi Sugiawan, and Shunsuke Managi, 2020. "The Impact of Renewable Energy Generation on the Spot Market Price in Germany: Ex-Post Analysis using Boosting Method," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
- Keeley, Alexander Ryota & Matsumoto, Ken'ichi & Tanaka, Kenta & Sugiawan, Yogi & Managi, Shunsuke, 2020. "The Impact of Renewable Energy Generation on the Spot Market Price in Germany: Ex-Post Analysis using Boosting Method," MPRA Paper 102314, University Library of Munich, Germany.
- Li, Chen & Mogollón, José M. & Tukker, Arnold & Dong, Jianning & von Terzi, Dominic & Zhang, Chunbo & Steubing, Bernhard, 2022. "Future material requirements for global sustainable offshore wind energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
- Song, Ying & Bouri, Elie & Ghosh, Sajal & Kanjilal, Kakali, 2021. "Rare earth and financial markets: Dynamics of return and volatility connectedness around the COVID-19 outbreak," Resources Policy, Elsevier, vol. 74(C).
- Nie, Ying & Li, Ping & Wang, Jianzhou & Zhang, Lifang, 2024. "A novel multivariate electrical price bi-forecasting system based on deep learning, a multi-input multi-output structure and an operator combination mechanism," Applied Energy, Elsevier, vol. 366(C).
- Croonenbroeck, Carsten & Stadtmann, Georg, 2019. "Renewable generation forecast studies – Review and good practice guidance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 312-322.
- He, Rui-fang & Zhong, Mei-rui & Huang, Jian-bai, 2021. "The dynamic effects of renewable-energy and fossil-fuel technological progress on metal consumption in the electric power industry," Resources Policy, Elsevier, vol. 71(C).
- Marcjasz, Grzegorz & Narajewski, Michał & Weron, Rafał & Ziel, Florian, 2023.
"Distributional neural networks for electricity price forecasting,"
Energy Economics, Elsevier, vol. 125(C).
- Grzegorz Marcjasz & Micha{l} Narajewski & Rafa{l} Weron & Florian Ziel, 2022. "Distributional neural networks for electricity price forecasting," Papers 2207.02832, arXiv.org, revised Dec 2022.
- Sheybanivaziri, Samaneh & Le Dréau, Jérôme & Kazmi, Hussain, 2024. "Forecasting price spikes in day-ahead electricity markets: techniques, challenges, and the road ahead," Discussion Papers 2024/1, Norwegian School of Economics, Department of Business and Management Science.
- Zheng, Likai & Xuan, Yimin, 2021. "Performance estimation of a V-shaped perovskite/silicon tandem device: A case study based on a bifacial heterojunction silicon cell," Applied Energy, Elsevier, vol. 301(C).
More about this item
Keywords
photovoltaic energy; machine learning; energy forecasting; solar farm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8732-:d:978572. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.