IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v95y2022i1d10.1140_epjb_s10051-021-00272-y.html
   My bibliography  Save this article

Elastic properties of Janus transition metal dichalcogenide nanotubes from first principles

Author

Listed:
  • Arpit Bhardwaj

    (Georgia Institute of Technology)

  • Phanish Suryanarayana

    (Georgia Institute of Technology)

Abstract

We calculate the elastic properties of Janus transition metal dichalcogenide (TMD) nanotubes using first principles Kohn–Sham density functional theory (DFT). Specifically, we perform electronic structure simulations that exploit the cyclic and helical symmetry in the system to compute the Young’s moduli, Poisson’s ratios, and torsional moduli for 27 select armchair and zigzag Janus TMD nanotubes at their equilibrium diameters. We find the following trend in the moduli values: MSSe > MSTe > MSeTe, while their anisotropy with respect to armchair and zigzag configurations has the following ordering: MSTe > MSeTe > MSSe. This anisotropy and its ordering between the different groups is confirmed by computing the shear modulus from the torsional modulus using an isotropic elastic continuum model, and comparing it against the value predicted from the isotropic relation featuring the Young’s modulus and Poisson’s ratio. We also develop a model for the Young’s and torsional moduli of Janus TMD nanotubes based on linear regression. Graphical abstract

Suggested Citation

  • Arpit Bhardwaj & Phanish Suryanarayana, 2022. "Elastic properties of Janus transition metal dichalcogenide nanotubes from first principles," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(1), pages 1-8, January.
  • Handle: RePEc:spr:eurphb:v:95:y:2022:i:1:d:10.1140_epjb_s10051-021-00272-y
    DOI: 10.1140/epjb/s10051-021-00272-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-021-00272-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-021-00272-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arpit Bhardwaj & Phanish Suryanarayana, 2022. "Strain engineering of Janus transition metal dichalcogenide nanotubes: an ab initio study," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(3), pages 1-9, March.
    2. Arpit Bhardwaj & Phanish Suryanarayana, 2023. "Ab initio study on the electromechanical response of Janus transition metal dihalide nanotubes," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(3), pages 1-8, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:95:y:2022:i:1:d:10.1140_epjb_s10051-021-00272-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.