IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms3292.html
   My bibliography  Save this article

Identification and design principles of low hole effective mass p-type transparent conducting oxides

Author

Listed:
  • Geoffroy Hautier

    (Institut de la matière condensée et des nanosciences (IMCN), European Theoretical Spectroscopy Facility (ETSF), Université Catholique de Louvain, Chemin des étoiles 8, bte L7.03.01)

  • Anna Miglio

    (Institut de la matière condensée et des nanosciences (IMCN), European Theoretical Spectroscopy Facility (ETSF), Université Catholique de Louvain, Chemin des étoiles 8, bte L7.03.01)

  • Gerbrand Ceder

    (Massachusetts Institute of Technology)

  • Gian-Marco Rignanese

    (Institut de la matière condensée et des nanosciences (IMCN), European Theoretical Spectroscopy Facility (ETSF), Université Catholique de Louvain, Chemin des étoiles 8, bte L7.03.01)

  • Xavier Gonze

    (Institut de la matière condensée et des nanosciences (IMCN), European Theoretical Spectroscopy Facility (ETSF), Université Catholique de Louvain, Chemin des étoiles 8, bte L7.03.01)

Abstract

The development of high-performance transparent conducting oxides is critical to many technologies from transparent electronics to solar cells. Whereas n-type transparent conducting oxides are present in many devices, their p-type counterparts are not largely commercialized, as they exhibit much lower carrier mobilities due to the large hole effective masses of most oxides. Here we conduct a high-throughput computational search on thousands of binary and ternary oxides and identify several highly promising compounds displaying exceptionally low hole effective masses (up to an order of magnitude lower than state-of-the-art p-type transparent conducting oxides), as well as wide band gaps. In addition to the discovery of specific compounds, the chemical rationalization of our findings opens new directions, beyond current Cu-based chemistries, for the design and development of future p-type transparent conducting oxides.

Suggested Citation

  • Geoffroy Hautier & Anna Miglio & Gerbrand Ceder & Gian-Marco Rignanese & Xavier Gonze, 2013. "Identification and design principles of low hole effective mass p-type transparent conducting oxides," Nature Communications, Nature, vol. 4(1), pages 1-7, October.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3292
    DOI: 10.1038/ncomms3292
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms3292
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms3292?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arpit Bhardwaj & Phanish Suryanarayana, 2022. "Strain engineering of Janus transition metal dichalcogenide nanotubes: an ab initio study," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(3), pages 1-9, March.
    2. Abderrahime Sekkat & Maciej Oskar Liedke & Viet Huong Nguyen & Maik Butterling & Federico Baiutti & Juan de Dios Sirvent Veru & Matthieu Weber & Laetitia Rapenne & Daniel Bellet & Guy Chichignoud & An, 2022. "Chemical deposition of Cu2O films with ultra-low resistivity: correlation with the defect landscape," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Arpit Bhardwaj & Phanish Suryanarayana, 2023. "Ab initio study on the electromechanical response of Janus transition metal dihalide nanotubes," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(3), pages 1-8, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.