IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i11d10.1007_s10668-022-02506-0.html
   My bibliography  Save this article

Biodiesel production from transesterification of Australian Brassica napus L. oil: optimisation and reaction kinetic model development

Author

Listed:
  • M. A. Hazrat

    (CQUniversity Australia)

  • M. G. Rasul

    (CQUniversity Australia)

  • M. M. K. Khan

    (CQUniversity Australia)

  • N. Ashwath

    (CQUniversity Australia)

  • I. M. R. Fattah

    (University of Technology Sydney
    Universiti Tenaga Nasional)

  • Hwai Chyuan Ong

    (National Yunlin University of Science and Technology)

  • T. M. I. Mahlia

    (University of Technology Sydney)

Abstract

Edible oil-based feedstocks based biodiesel is still leading the industry around the world. Canola oil (Brassica napus L.) contributes significantly to that race. Process optimisation and the development of reaction kinetic models of edible oil feedstocks are still required since the knowledge of kinetics is needed for designing industrial facilities and evaluating the performance of catalysts during transesterification or other related processes in a biorefinery. This research focuses on the transesterification process for biodiesel production because of its higher output efficiency, reactivity with feedstock, techno-economic feasibility in terms of FFA content, and environmental sustainability. The response surface method with the Box–Behnken model was used to optimise the process. Multivariate analysis of variance (ANOVA) was also performed to investigate the effectiveness of the regression model. The optimal process conditions were found to be 5.89 M methanol, 0.5% (w/w) KOH, 60 °C and 120 min. The predicted yield was 99.5% for a 95% confidence interval (99.1, 99.9). The experimental yield was 99.6% for these conditions. Two different kinetic models were also developed in this study. The activation energy was 16.9% higher for the pseudo-first-order irreversible reaction than for the pseudo-homogenous irreversible reaction. Such a comprehensive analysis will assist stakeholders in evaluating the technology for industrial development in biodiesel fuel commercialisation.

Suggested Citation

  • M. A. Hazrat & M. G. Rasul & M. M. K. Khan & N. Ashwath & I. M. R. Fattah & Hwai Chyuan Ong & T. M. I. Mahlia, 2023. "Biodiesel production from transesterification of Australian Brassica napus L. oil: optimisation and reaction kinetic model development," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12247-12272, November.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:11:d:10.1007_s10668-022-02506-0
    DOI: 10.1007/s10668-022-02506-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-022-02506-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-022-02506-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. José María Encinar & Ana Pardal & Nuria Sánchez & Sergio Nogales, 2018. "Biodiesel by Transesterification of Rapeseed Oil Using Ultrasound: A Kinetic Study of Base-Catalysed Reactions," Energies, MDPI, vol. 11(9), pages 1-13, August.
    2. John J. Milledge & Benjamin Smith & Philip W. Dyer & Patricia Harvey, 2014. "Macroalgae-Derived Biofuel: A Review of Methods of Energy Extraction from Seaweed Biomass," Energies, MDPI, vol. 7(11), pages 1-29, November.
    3. Jang, Myung Gwi & Kim, Deog Keun & Park, Soon Chul & Lee, Jin Suk & Kim, Seung Wook, 2012. "Biodiesel production from crude canola oil by two-step enzymatic processes," Renewable Energy, Elsevier, vol. 42(C), pages 99-104.
    4. Haris Mahmood Khan & Tanveer Iqbal & M. A. Mujtaba & Manzoore Elahi M. Soudagar & Ibham Veza & I. M. Rizwanul Fattah, 2021. "Microwave Assisted Biodiesel Production Using Heterogeneous Catalysts," Energies, MDPI, vol. 14(23), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andra Lovasz & Nicu Cornel Sabau & Ioana Borza & Radu Brejea, 2023. "Production and Quality of Biodiesel under the Influence of a Rapeseed Fertilization System," Energies, MDPI, vol. 16(9), pages 1-27, April.
    2. Maria Gabriela De Paola & Ivan Mazza & Rosy Paletta & Catia Giovanna Lopresto & Vincenza Calabrò, 2021. "Small-Scale Biodiesel Production Plants—An Overview," Energies, MDPI, vol. 14(7), pages 1-20, March.
    3. Peng-Lim, Boey & Ganesan, Shangeetha & Maniam, Gaanty Pragas & Khairuddean, Melati, 2012. "Sequential conversion of high free fatty acid oils into biodiesel using a new catalyst system," Energy, Elsevier, vol. 46(1), pages 132-139.
    4. Zane Vincevica-Gaile & Varvara Sachpazidou & Valdis Bisters & Maris Klavins & Olga Anne & Inga Grinfelde & Emil Hanc & William Hogland & Muhammad Asim Ibrahim & Yahya Jani & Mait Kriipsalu & Divya Pal, 2022. "Applying Macroalgal Biomass as an Energy Source: Utility of the Baltic Sea Beach Wrack for Thermochemical Conversion," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    5. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, R. & Ebadi, M.T. & Yusaf, Talal, 2019. "Characterization of biodiesel production (ultrasonic-assisted) from evening-primroses (Oenothera lamarckiana) as novel feedstock and its effect on CI engine parameters," Renewable Energy, Elsevier, vol. 130(C), pages 50-60.
    6. Koguleshun Subramaniam & Kang Yao Wong & Kok Hoe Wong & Cheng Tung Chong & Jo-Han Ng, 2024. "Enhancing Biodiesel Production: A Review of Microchannel Reactor Technologies," Energies, MDPI, vol. 17(7), pages 1-37, March.
    7. Izabela Michalak, 2018. "Experimental processing of seaweeds for biofuels," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(3), May.
    8. Zhou, Li & Li, Fashe & Duan, Yaozong & Wang, Hua, 2023. "Effect of phospholipids on the premixed combustion behavior of Jatropha curcas biodiesel," Renewable Energy, Elsevier, vol. 218(C).
    9. Nassef, Ahmed M. & Olabi, A.G. & Rodriguez, Cristina & Abdelkareem, Mohammad Ali & Rezk, Hegazy, 2021. "Optimal operating parameter determination and modeling to enhance methane production from macroalgae," Renewable Energy, Elsevier, vol. 163(C), pages 2190-2197.
    10. Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.
    11. Gegg, Per & Wells, Victoria, 2019. "The development of seaweed-derived fuels in the UK: An analysis of stakeholder issues and public perceptions," Energy Policy, Elsevier, vol. 133(C).
    12. Apip Amrullah & Obie Farobie & Asep Bayu & Novi Syaftika & Edy Hartulistiyoso & Navid R. Moheimani & Surachai Karnjanakom & Yukihiko Matsumura, 2022. "Slow Pyrolysis of Ulva lactuca (Chlorophyta) for Sustainable Production of Bio-Oil and Biochar," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    13. Yong, Wilson Thau Lym & Thien, Vun Yee & Rupert, Rennielyn & Rodrigues, Kenneth Francis, 2022. "Seaweed: A potential climate change solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    14. Ni, Zihao & Zhai, Yuling & Li, Fashe & Wang, Hua & Yang, Kai & Wang, Bican & Chen, Yu, 2020. "Reaction kinetics analysis of branched-chain alkyl esters of palmitic acid and cold flow properties," Renewable Energy, Elsevier, vol. 147(P1), pages 719-729.
    15. Craig Walker & Madoc Sheehan, 2022. "Drying Kinetics of Macroalgae as a Function of Drying Gas Velocity and Material Bulk Density, Including Shrinkage," Clean Technol., MDPI, vol. 4(3), pages 1-21, July.
    16. Gómez-Marín, N. & Bridgwater, A.V., 2021. "Mapping bioenergy stakeholders: A systematic and scientometric review of capabilities and expertise in bioenergy research in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    17. Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Aghbashlo, Mortaza & Karimi, Keikhosro & Tabatabaei, Meisam, 2019. "Shifting fuel feedstock from oil wells to sea: Iran outlook and potential for biofuel production from brown macroalgae (ochrophyta; phaeophyceae)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 626-642.
    18. Chia, Shir Reen & Ong, Hwai Chyuan & Chew, Kit Wayne & Show, Pau Loke & Phang, Siew-Moi & Ling, Tau Chuan & Nagarajan, Dillirani & Lee, Duu-Jong & Chang, Jo-Shu, 2018. "Sustainable approaches for algae utilisation in bioenergy production," Renewable Energy, Elsevier, vol. 129(PB), pages 838-852.
    19. Wei-Hsin Chen & Keat Teong Lee & Hwai Chyuan Ong, 2019. "Biofuel and Bioenergy Technology," Energies, MDPI, vol. 12(2), pages 1-12, January.
    20. Avhad, M.R. & Marchetti, J.M., 2015. "A review on recent advancement in catalytic materials for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 696-718.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:11:d:10.1007_s10668-022-02506-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.