IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i20p3811-d274471.html
   My bibliography  Save this article

Optimization of Cerbera manghas Biodiesel Production Using Artificial Neural Networks Integrated with Ant Colony Optimization

Author

Listed:
  • Arridina Susan Silitonga

    (Department of Mechanical Engineering, Politeknik Negeri Medan, Medan 20155, Indonesia)

  • Teuku Meurah Indra Mahlia

    (School of Information, Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia)

  • Abd Halim Shamsuddin

    (Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia)

  • Hwai Chyuan Ong

    (School of Information, Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
    Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Jassinnee Milano

    (Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Fitranto Kusumo

    (Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia
    Department of Computer Science & Information Technology, College of Computer Science & Information Technology Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia)

  • Abdi Hanra Sebayang

    (Department of Mechanical Engineering, Politeknik Negeri Medan, Medan 20155, Indonesia)

  • Surya Dharma

    (Department of Mechanical Engineering, Politeknik Negeri Medan, Medan 20155, Indonesia)

  • Husin Ibrahim

    (Department of Mechanical Engineering, Politeknik Negeri Medan, Medan 20155, Indonesia)

  • Hazlina Husin

    (Department of Petroleum Engineering, Faculty of Engineering, Universiti Teknologi Petronas, Persiaran UTP, Seri Iskandar 32610, Perak, Malaysia)

  • M. Mofijur

    (School of Information, Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia)

  • S. M. Ashrafur Rahman

    (Biofuel Engine Research Facility (BERF), Queensland University of Technology, Brisbane, QLD 4000, Australia)

Abstract

Optimizing the process parameters of biodiesel production is the key to maximizing biodiesel yields. In this study, artificial neural network models integrated with ant colony optimization were developed to optimize the parameters of the two-step Cerbera manghas biodiesel production process: (1) esterification and (2) transesterification. The parameters of esterification and transesterification processes were optimized to minimize the acid value and maximize the C. manghas biodiesel yield, respectively. There was excellent agreement between the average experimental values and those predicted by the artificial neural network models, indicating their reliability. These models will be useful to predict the optimum process parameters, reducing the trial and error of conventional experimentation. The kinetic study was conducted to understand the mechanism of the transesterification process and, lastly, the model could measure the physicochemical properties of the C. manghas biodiesel.

Suggested Citation

  • Arridina Susan Silitonga & Teuku Meurah Indra Mahlia & Abd Halim Shamsuddin & Hwai Chyuan Ong & Jassinnee Milano & Fitranto Kusumo & Abdi Hanra Sebayang & Surya Dharma & Husin Ibrahim & Hazlina Husin , 2019. "Optimization of Cerbera manghas Biodiesel Production Using Artificial Neural Networks Integrated with Ant Colony Optimization," Energies, MDPI, vol. 12(20), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3811-:d:274471
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/20/3811/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/20/3811/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. José María Encinar & Ana Pardal & Nuria Sánchez & Sergio Nogales, 2018. "Biodiesel by Transesterification of Rapeseed Oil Using Ultrasound: A Kinetic Study of Base-Catalysed Reactions," Energies, MDPI, vol. 11(9), pages 1-13, August.
    2. Veronica Winoto & Nuttawan Yoswathana, 2019. "Optimization of Biodiesel Production Using Nanomagnetic CaO-Based Catalysts with Subcritical Methanol Transesterification of Rubber Seed Oil," Energies, MDPI, vol. 12(2), pages 1-13, January.
    3. Silitonga, A.S. & Masjuki, H.H. & Mahlia, T.M.I. & Ong, H.C. & Chong, W.T. & Boosroh, M.H., 2013. "Overview properties of biodiesel diesel blends from edible and non-edible feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 346-360.
    4. Ramezani, K. & Rowshanzamir, S. & Eikani, M.H., 2010. "Castor oil transesterification reaction: A kinetic study and optimization of parameters," Energy, Elsevier, vol. 35(10), pages 4142-4148.
    5. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    6. Channapattana, S.V. & Pawar, Abhay A. & Kamble, Prashant G., 2017. "Optimisation of operating parameters of DI-CI engine fueled with second generation Bio-fuel and development of ANN based prediction model," Applied Energy, Elsevier, vol. 187(C), pages 84-95.
    7. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    8. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    9. Arumugam, A. & Ponnusami, V., 2019. "Biodiesel production from Calophyllum inophyllum oil a potential non-edible feedstock: An overview," Renewable Energy, Elsevier, vol. 131(C), pages 459-471.
    10. Silitonga, A.S. & Masjuki, H.H. & Mahlia, T.M.I. & Ong, H.C. & Atabani, A.E. & Chong, W.T., 2013. "A global comparative review of biodiesel production from jatropha curcas using different homogeneous acid and alkaline catalysts: Study of physical and chemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 514-533.
    11. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Mekhilef, S., 2011. "A review on prospect of Jatropha curcas for biodiesel in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3733-3756.
    12. Adenuga, Adeniyi Abiodun & Idowu, Oluwatope Olaniyi & Oyekunle, John Adekunle Oyedele, 2020. "Synthesis of quality biodiesel from Calophyllum inophyllum kernels through reactive extraction method: Optimization of process parameters and characterization of the products," Renewable Energy, Elsevier, vol. 145(C), pages 2530-2537.
    13. Yusaf, T.F. & Yousif, B.F. & Elawad, M.M., 2011. "Crude palm oil fuel for diesel-engines: Experimental and ANN simulation approaches," Energy, Elsevier, vol. 36(8), pages 4871-4878.
    14. M. Mofijur & Teuku Meurah Indra Mahlia & Arridina Susan Silitonga & Hwai Chyuan Ong & Mahyar Silakhori & Muhammad Heikal Hasan & Nandy Putra & S.M. Ashrafur Rahman, 2019. "Phase Change Materials (PCM) for Solar Energy Usages and Storage: An Overview," Energies, MDPI, vol. 12(16), pages 1-20, August.
    15. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Liaquat, A.M. & Shahabuddin, M. & Varman, M., 2012. "Prospects of biodiesel from Jatropha in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5007-5020.
    16. Kusumo, F. & Silitonga, A.S. & Masjuki, H.H. & Ong, Hwai Chyuan & Siswantoro, J. & Mahlia, T.M.I., 2017. "Optimization of transesterification process for Ceiba pentandra oil: A comparative study between kernel-based extreme learning machine and artificial neural networks," Energy, Elsevier, vol. 134(C), pages 24-34.
    17. Tahan Latibari, Sara & Mehrali, Mohammad & Mehrali, Mehdi & Indra Mahlia, Teuku Meurah & Cornelis Metselaar, Hendrik Simon, 2013. "Synthesis, characterization and thermal properties of nanoencapsulated phase change materials via sol–gel method," Energy, Elsevier, vol. 61(C), pages 664-672.
    18. Badday, Ali Sabri & Abdullah, Ahmad Zuhairi & Lee, Keat-Teong, 2014. "Transesterification of crude Jatropha oil by activated carbon-supported heteropolyacid catalyst in an ultrasound-assisted reactor system," Renewable Energy, Elsevier, vol. 62(C), pages 10-17.
    19. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E., 2013. "Evaluation of biodiesel blending, engine performance and emissions characteristics of Jatropha curcas methyl ester: Malaysian perspective," Energy, Elsevier, vol. 55(C), pages 879-887.
    20. Andrea Farkas & Nastia Degiuli & Ivana Martić, 2019. "Assessment of Offshore Wave Energy Potential in the Croatian Part of the Adriatic Sea and Comparison with Wind Energy Potential," Energies, MDPI, vol. 12(12), pages 1-20, June.
    21. Kumar, Vikram & Muthuraj, Muthusivaramapandian & Palabhanvi, Basavaraj & Ghoshal, Aloke Kumar & Das, Debasish, 2014. "Evaluation and optimization of two stage sequential in situ transesterification process for fatty acid methyl ester quantification from microalgae," Renewable Energy, Elsevier, vol. 68(C), pages 560-569.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mei Yin Ong & Saifuddin Nomanbhay & Fitranto Kusumo & Raja Mohamad Hafriz Raja Shahruzzaman & Abd Halim Shamsuddin, 2021. "Modeling and Optimization of Microwave-Based Bio-Jet Fuel from Coconut Oil: Investigation of Response Surface Methodology (RSM) and Artificial Neural Network Methodology (ANN)," Energies, MDPI, vol. 14(2), pages 1-17, January.
    2. Iftikhar Ahmad & Adil Sana & Manabu Kano & Izzat Iqbal Cheema & Brenno C. Menezes & Junaid Shahzad & Zahid Ullah & Muzammil Khan & Asad Habib, 2021. "Machine Learning Applications in Biofuels’ Life Cycle: Soil, Feedstock, Production, Consumption, and Emissions," Energies, MDPI, vol. 14(16), pages 1-27, August.
    3. Shelare, Sagar D. & Belkhode, Pramod N. & Nikam, Keval Chandrakant & Jathar, Laxmikant D. & Shahapurkar, Kiran & Soudagar, Manzoore Elahi M. & Veza, Ibham & Khan, T.M. Yunus & Kalam, M.A. & Nizami, Ab, 2023. "Biofuels for a sustainable future: Examining the role of nano-additives, economics, policy, internet of things, artificial intelligence and machine learning technology in biodiesel production," Energy, Elsevier, vol. 282(C).
    4. Ivan Lorencin & Nikola Anđelić & Vedran Mrzljak & Zlatan Car, 2019. "Genetic Algorithm Approach to Design of Multi-Layer Perceptron for Combined Cycle Power Plant Electrical Power Output Estimation," Energies, MDPI, vol. 12(22), pages 1-26, November.
    5. Cheng Yan & Jianfeng Zhu & Xiuli Shen & Jun Fan & Dong Mi & Zhengming Qian, 2020. "Ensemble of Regression-Type and Interpolation-Type Metamodels," Energies, MDPI, vol. 13(3), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahlia, T.M.I. & Syazmi, Z.A.H.S. & Mofijur, M. & Abas, A.E. Pg & Bilad, M.R. & Ong, Hwai Chyuan & Silitonga, A.S., 2020. "Patent landscape review on biodiesel production: Technology updates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    2. Fitranto Kusumo & T.M.I. Mahlia & A.H. Shamsuddin & Hwai Chyuan Ong & A.R Ahmad & Z. Ismail & Z.C. Ong & A.S. Silitonga, 2019. "The Effect of Multi-Walled Carbon Nanotubes-Additive in Physicochemical Property of Rice Brand Methyl Ester: Optimization Analysis," Energies, MDPI, vol. 12(17), pages 1-19, August.
    3. M. Mofijur & Teuku Meurah Indra Mahlia & Arridina Susan Silitonga & Hwai Chyuan Ong & Mahyar Silakhori & Muhammad Heikal Hasan & Nandy Putra & S.M. Ashrafur Rahman, 2019. "Phase Change Materials (PCM) for Solar Energy Usages and Storage: An Overview," Energies, MDPI, vol. 12(16), pages 1-20, August.
    4. M. Mofijur & T.M.I. Mahlia & J. Logeswaran & M. Anwar & A.S. Silitonga & S.M. Ashrafur Rahman & A.H. Shamsuddin, 2019. "Potential of Rice Industry Biomass as a Renewable Energy Source," Energies, MDPI, vol. 12(21), pages 1-21, October.
    5. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    6. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Ashrafur Rahman, S.M. & Mahmudul, H.M., 2015. "Energy scenario and biofuel policies and targets in ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 51-61.
    7. Hwai Chyuan Ong & M. Mofijur & A.S. Silitonga & D. Gumilang & Fitranto Kusumo & T.M.I. Mahlia, 2020. "Physicochemical Properties of Biodiesel Synthesised from Grape Seed, Philippine Tung, Kesambi, and Palm Oils," Energies, MDPI, vol. 13(6), pages 1-14, March.
    8. Mahmudul, H.M. & Rasul, M.G. & Akbar, D. & Narayanan, R. & Mofijur, M., 2022. "Food waste as a source of sustainable energy: Technical, economical, environmental and regulatory feasibility analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    9. M. Mofijur & F. Kusumo & I. M. Rizwanul Fattah & H. M. Mahmudul & M. G. Rasul & A. H. Shamsuddin & T. M. I. Mahlia, 2020. "Resource Recovery from Waste Coffee Grounds Using Ultrasonic-Assisted Technology for Bioenergy Production," Energies, MDPI, vol. 13(7), pages 1-15, April.
    10. Mohammad Anwar & Mohammad G. Rasul & Nanjappa Ashwath & Md Mofijur Rahman, 2018. "Optimisation of Second-Generation Biodiesel Production from Australian Native Stone Fruit Oil Using Response Surface Method," Energies, MDPI, vol. 11(10), pages 1-18, September.
    11. Kumar, Praveen & Srivastava, Vimal Chandra & Jha, Mithilesh Kumar, 2016. "Jatropha curcas phytotomy and applications: Development as a potential biofuel plant through biotechnological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 818-838.
    12. Aditiya, H.B. & Mahlia, T.M.I. & Chong, W.T. & Nur, Hadi & Sebayang, A.H., 2016. "Second generation bioethanol production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 631-653.
    13. Mofijur, M. & Rasul, M.G. & Hyde, J. & Azad, A.K. & Mamat, R. & Bhuiya, M.M.K., 2016. "Role of biofuel and their binary (diesel–biodiesel) and ternary (ethanol–biodiesel–diesel) blends on internal combustion engines emission reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 265-278.
    14. Ooi, Xian Yih & Gao, Wei & Ong, Hwai Chyuan & Lee, Hwei Voon & Juan, Joon Ching & Chen, Wei Hsin & Lee, Keat Teong, 2019. "Overview on catalytic deoxygenation for biofuel synthesis using metal oxide supported catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 834-852.
    15. Moniruzzaman, M. & Yaakob, Zahira & Khatun, Rahima, 2016. "Biotechnology for Jatropha improvement: A worthy exploration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1262-1277.
    16. Rashed, M.M. & Masjuki, H.H. & Kalam, M.A. & Alabdulkarem, Abdullah & Rahman, M.M. & Imdadul, H.K. & Rashedul, H.K., 2016. "Study of the oxidation stability and exhaust emission analysis of Moringa olifera biodiesel in a multi-cylinder diesel engine with aromatic amine antioxidants," Renewable Energy, Elsevier, vol. 94(C), pages 294-303.
    17. M. Mofijur & M.M. Hasan & T.M.I. Mahlia & S.M. Ashrafur Rahman & A.S. Silitonga & Hwai Chyuan Ong, 2019. "Performance and Emission Parameters of Homogeneous Charge Compression Ignition (HCCI) Engine: A Review," Energies, MDPI, vol. 12(18), pages 1-21, September.
    18. Edrisi, Sheikh Adil & Dubey, Rama Kant & Tripathi, Vishal & Bakshi, Mansi & Srivastava, Pankaj & Jamil, Sarah & Singh, H.B. & Singh, Nandita & Abhilash, P.C., 2015. "Jatropha curcas L.: A crucified plant waiting for resurgence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 855-862.
    19. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    20. Habibullah, M. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Mofijur, M. & Mobarak, H.M. & Ashraful, A.M., 2015. "Potential of biodiesel as a renewable energy source in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 819-834.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3811-:d:274471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.