IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9395-d1001007.html
   My bibliography  Save this article

Biofuel Production from Seaweeds: A Comprehensive Review

Author

Listed:
  • Yiru Zhao

    (Univ. Bretagne Sud, UMR CNRS 6027, IRDL, F-56300 Pontivy, France)

  • Nathalie Bourgougnon

    (Univ. Bretagne Sud, EA 3884, LBCM, IUEM, F-56000 Vannes, France)

  • Jean-Louis Lanoisellé

    (Univ. Bretagne Sud, UMR CNRS 6027, IRDL, F-56300 Pontivy, France)

  • Thomas Lendormi

    (Univ. Bretagne Sud, UMR CNRS 6027, IRDL, F-56300 Pontivy, France)

Abstract

Seaweeds represent a promising and sustainable feedstock for biofuel production which raises increasing research interests. Their high availability, easy fermentable composition, and good degradation potential make them a suitable candidate for alternating fossil fuels as an advantageous energy resource. This comprehensive review aims to summarize and discuss data from the literature on the biochemical composition of seaweeds and its potential for biomethane and biohydrogen production, as well as to investigate the effect of the common pretreatment methods. Satisfactory yields comparable to terrestrial biomass could be obtained through anaerobic digestion; concerning dark fermentation, the challenge remains to better define the operating conditions allowing a stable production of biohydrogen. Finally, we propose a potential energy production scheme with the seaweed found by the Caribbean Islands of Guadeloupe and Martinique, as well as current techno-economic challenges and future prospects. An annual energy potential of 66 GWh could be attained via a two-stage biohythane production process, this tends to be promising in terms of energetic valorization and coastal management.

Suggested Citation

  • Yiru Zhao & Nathalie Bourgougnon & Jean-Louis Lanoisellé & Thomas Lendormi, 2022. "Biofuel Production from Seaweeds: A Comprehensive Review," Energies, MDPI, vol. 15(24), pages 1-34, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9395-:d:1001007
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9395/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9395/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John J. Milledge & Birthe V. Nielsen & Manar S. Sadek & Patricia J. Harvey, 2018. "Effect of Freshwater Washing Pretreatment on Sargassum muticum as a Feedstock for Biogas Production," Energies, MDPI, vol. 11(7), pages 1-14, July.
    2. Singh, Jasvinder & Gu, Sai, 2010. "Commercialization potential of microalgae for biofuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2596-2610, December.
    3. Victor Smetacek & Adriana Zingone, 2013. "Green and golden seaweed tides on the rise," Nature, Nature, vol. 504(7478), pages 84-88, December.
    4. John James Milledge & Supattra Maneein & Elena Arribas López & Debbie Bartlett, 2020. "Sargassum Inundations in Turks and Caicos: Methane Potential and Proximate, Ultimate, Lipid, Amino Acid, Metal and Metalloid Analyses," Energies, MDPI, vol. 13(6), pages 1-27, March.
    5. Sambusiti, Cecilia & Bellucci, Micol & Zabaniotou, Anastasia & Beneduce, Luciano & Monlau, Florian, 2015. "Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 20-36.
    6. Fasahati, Peyman & Woo, Hee Chul & Liu, J. Jay, 2015. "Industrial-scale bioethanol production from brown algae: Effects of pretreatment processes on plant economics," Applied Energy, Elsevier, vol. 139(C), pages 175-187.
    7. Montingelli, M.E. & Benyounis, K.Y. & Quilty, B. & Stokes, J. & Olabi, A.G., 2017. "Influence of mechanical pretreatment and organic concentration of Irish brown seaweed for methane production," Energy, Elsevier, vol. 118(C), pages 1079-1089.
    8. Mauro Prestipino & Antonio Piccolo & Maria Francesca Polito & Antonio Galvagno, 2022. "Combined Bio-Hydrogen, Heat, and Power Production Based on Residual Biomass Gasification: Energy, Exergy, and Renewability Assessment of an Alternative Process Configuration," Energies, MDPI, vol. 15(15), pages 1-17, July.
    9. Rahbari, Alireza & Venkataraman, Mahesh B. & Pye, John, 2018. "Energy and exergy analysis of concentrated solar supercritical water gasification of algal biomass," Applied Energy, Elsevier, vol. 228(C), pages 1669-1682.
    10. John J. Milledge & Benjamin Smith & Philip W. Dyer & Patricia Harvey, 2014. "Macroalgae-Derived Biofuel: A Review of Methods of Energy Extraction from Seaweed Biomass," Energies, MDPI, vol. 7(11), pages 1-29, November.
    11. Liu, J. Jay & Dickson, Rofice & Niaz, Haider & Van Hal, Jaap W. & Dijkstra, J.W. & Fasahati, Peyman, 2022. "Production of fuels and chemicals from macroalgal biomass: Current status, potentials, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    12. Thompson, T.M. & Young, B.R. & Baroutian, S., 2020. "Pelagic Sargassum for energy and fertiliser production in the Caribbean: A case study on Barbados," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    13. Ajay Kumar & David D. Jones & Milford A. Hanna, 2009. "Thermochemical Biomass Gasification: A Review of the Current Status of the Technology," Energies, MDPI, vol. 2(3), pages 1-26, July.
    14. Tabassum, Muhammad Rizwan & Xia, Ao & Murphy, Jerry D., 2017. "Comparison of pre-treatments to reduce salinity and enhance biomethane yields of Laminaria digitata harvested in different seasons," Energy, Elsevier, vol. 140(P1), pages 546-551.
    15. Tedesco, S. & Benyounis, K.Y. & Olabi, A.G., 2013. "Mechanical pretreatment effects on macroalgae-derived biogas production in co-digestion with sludge in Ireland," Energy, Elsevier, vol. 61(C), pages 27-33.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John James Milledge & Supattra Maneein & Elena Arribas López & Debbie Bartlett, 2020. "Sargassum Inundations in Turks and Caicos: Methane Potential and Proximate, Ultimate, Lipid, Amino Acid, Metal and Metalloid Analyses," Energies, MDPI, vol. 13(6), pages 1-27, March.
    2. Enrique Salgado-Hernández & Ángel Isauro Ortiz-Ceballos & Sergio Martínez-Hernández & Erik Samuel Rosas-Mendoza & Ana Elena Dorantes-Acosta & Andrea Alvarado-Vallejo & Alejandro Alvarado-Lassman, 2022. "Methane Production of Sargassum spp. Biomass from the Mexican Caribbean: Solid–Liquid Separation and Component Distribution," IJERPH, MDPI, vol. 20(1), pages 1-13, December.
    3. Kouhgardi, Esmaeil & Zendehboudi, Sohrab & Mohammadzadeh, Omid & Lohi, Ali & Chatzis, Ioannis, 2023. "Current status and future prospects of biofuel production from brown algae in North America: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    4. Zane Vincevica-Gaile & Varvara Sachpazidou & Valdis Bisters & Maris Klavins & Olga Anne & Inga Grinfelde & Emil Hanc & William Hogland & Muhammad Asim Ibrahim & Yahya Jani & Mait Kriipsalu & Divya Pal, 2022. "Applying Macroalgal Biomass as an Energy Source: Utility of the Baltic Sea Beach Wrack for Thermochemical Conversion," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    5. Nassef, Ahmed M. & Olabi, A.G. & Rodriguez, Cristina & Abdelkareem, Mohammad Ali & Rezk, Hegazy, 2021. "Optimal operating parameter determination and modeling to enhance methane production from macroalgae," Renewable Energy, Elsevier, vol. 163(C), pages 2190-2197.
    6. Eun-Young Park & Jung-Kyu Park, 2021. "Sequential Hydrothermal HCl Pretreatment and Enzymatic Hydrolysis of Saccharina japonica Biomass," Energies, MDPI, vol. 14(23), pages 1-9, December.
    7. Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.
    8. Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Aghbashlo, Mortaza & Karimi, Keikhosro & Tabatabaei, Meisam, 2019. "Shifting fuel feedstock from oil wells to sea: Iran outlook and potential for biofuel production from brown macroalgae (ochrophyta; phaeophyceae)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 626-642.
    9. John J. Milledge & Birthe V. Nielsen & Supattra Maneein & Patricia J. Harvey, 2019. "A Brief Review of Anaerobic Digestion of Algae for Bioenergy," Energies, MDPI, vol. 12(6), pages 1-22, March.
    10. Sudhakar, K. & Mamat, R. & Samykano, M. & Azmi, W.H. & Ishak, W.F.W. & Yusaf, Talal, 2018. "An overview of marine macroalgae as bioresource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 165-179.
    11. Pawar, Sanjay, 2016. "Effectiveness mapping of open raceway pond and tubular photobioreactors for sustainable production of microalgae biofuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 640-653.
    12. Tedesco, S. & Daniels, S., 2018. "Optimisation of biogas generation from brown seaweed residues: Compositional and geographical parameters affecting the viability of a biorefinery concept," Applied Energy, Elsevier, vol. 228(C), pages 712-723.
    13. Intaramas, Kanpichcha & Jonglertjunya, Woranart & Laosiripojana, Navadol & Sakdaronnarong, Chularat, 2018. "Selective conversion of cassava mash to glucose using solid acid catalysts by sequential solid state mixed-milling reaction and thermo-hydrolysis," Energy, Elsevier, vol. 149(C), pages 837-847.
    14. Tamilarasan, K. & Kavitha, S. & Selvam, Ammaiyappan & Rajesh Banu, J. & Yeom, Ick Tae & Nguyen, Dinh Duc & Saratale, Ganesh Dattatraya, 2018. "Cost-effective, low thermo-chemo disperser pretreatment for biogas production potential of marine macroalgae Chaetomorpha antennina," Energy, Elsevier, vol. 163(C), pages 533-545.
    15. Wang, Hanxi & Xu, Jianling & Sheng, Lianxi & Liu, Xuejun, 2018. "Effect of addition of biogas slurry for anaerobic fermentation of deer manure on biogas production," Energy, Elsevier, vol. 165(PB), pages 411-418.
    16. Rodriguez, Cristina & Alaswad, Abed & El-Hassan, Zaki & Olabi, Abdul G., 2018. "Waste paper and macroalgae co-digestion effect on methane production," Energy, Elsevier, vol. 154(C), pages 119-125.
    17. Tabassum, Muhammad Rizwan & Xia, Ao & Murphy, Jerry D., 2017. "Comparison of pre-treatments to reduce salinity and enhance biomethane yields of Laminaria digitata harvested in different seasons," Energy, Elsevier, vol. 140(P1), pages 546-551.
    18. Locatelli, Giorgio & Boarin, Sara & Pellegrino, Francesco & Ricotti, Marco E., 2015. "Load following with Small Modular Reactors (SMR): A real options analysis," Energy, Elsevier, vol. 80(C), pages 41-54.
    19. Sajid, Zaman & Khan, Faisal & Zhang, Yan, 2018. "A novel process economics risk model applied to biodiesel production system," Renewable Energy, Elsevier, vol. 118(C), pages 615-626.
    20. Liu, J. Jay & Dickson, Rofice & Niaz, Haider & Van Hal, Jaap W. & Dijkstra, J.W. & Fasahati, Peyman, 2022. "Production of fuels and chemicals from macroalgal biomass: Current status, potentials, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9395-:d:1001007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.