IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p719-729.html
   My bibliography  Save this article

Reaction kinetics analysis of branched-chain alkyl esters of palmitic acid and cold flow properties

Author

Listed:
  • Ni, Zihao
  • Zhai, Yuling
  • Li, Fashe
  • Wang, Hua
  • Yang, Kai
  • Wang, Bican
  • Chen, Yu

Abstract

Preparation of methyl palmitate, isopropyl palmitate, isobutyl palmitate, and isoamyl palmitate was carried out using pyridine n-butyl bisulfate ionic liquid as catalyst in a self-designed reactor to catalyze esterification reaction of palmitic acid with methanol, isopropanol, isobutanol, and isoamyl alcohol, respectively. According to the single-factor experimental results, an orthogonal test of four factors and three levels was carried out for branched-chain alkyl esters of palmitic acid under different reaction time, reaction temperature, and catalyst dosage. Verification test was conducted under the optimal conditions, and the conversion in all the cases was up to 97%. Analysis of the reaction kinetics of methyl palmitate, isopropyl palmitate, isobutyl palmitate, and isoamyl palmitate was carried out by the integral method. Reaction order, frequency factor, activation energy, and reaction kinetic model were determined. Compared to methyl palmitate, the kinematic viscosity of the branched-chain alkyl esters of palmitic acid was slightly higher; however, the solidifying point (SP) and cold filter plugging point (CFPP) decreased with increasing degree of branched-chain. The CFPP reduced by up to 15 °C. Therefore, the use of branched-chain alcohol instead of methanol ester exchange descaling method can effectively reduce the SP and CFPP of biodiesel to improve its cold flow properties.

Suggested Citation

  • Ni, Zihao & Zhai, Yuling & Li, Fashe & Wang, Hua & Yang, Kai & Wang, Bican & Chen, Yu, 2020. "Reaction kinetics analysis of branched-chain alkyl esters of palmitic acid and cold flow properties," Renewable Energy, Elsevier, vol. 147(P1), pages 719-729.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:719-729
    DOI: 10.1016/j.renene.2019.08.138
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119313254
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.08.138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. José María Encinar & Ana Pardal & Nuria Sánchez & Sergio Nogales, 2018. "Biodiesel by Transesterification of Rapeseed Oil Using Ultrasound: A Kinetic Study of Base-Catalysed Reactions," Energies, MDPI, vol. 11(9), pages 1-13, August.
    2. Makarevičienė, Violeta & Kazancev, Kiril & Kazanceva, Irina, 2015. "Possibilities for improving the cold flow properties of biodiesel fuel by blending with butanol," Renewable Energy, Elsevier, vol. 75(C), pages 805-807.
    3. Mohanan, Athira & Bouzidi, Laziz & Li, Shaojun & Narine, Suresh S., 2016. "Mitigating crystallization of saturated fames in biodiesel: 1. Lowering crystallization temperatures via addition of metathesized soybean oil," Energy, Elsevier, vol. 96(C), pages 335-345.
    4. Likozar, Blaž & Levec, Janez, 2014. "Transesterification of canola, palm, peanut, soybean and sunflower oil with methanol, ethanol, isopropanol, butanol and tert-butanol to biodiesel: Modelling of chemical equilibrium, reaction kinetics ," Applied Energy, Elsevier, vol. 123(C), pages 108-120.
    5. Lanjekar, R.D. & Deshmukh, D., 2016. "A review of the effect of the composition of biodiesel on NOx emission, oxidative stability and cold flow properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1401-1411.
    6. Dwivedi, Gaurav & Sharma, M.P., 2014. "Impact of cold flow properties of biodiesel on engine performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 650-656.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sierra-Cantor, Jonathan Fabián & Guerrero-Fajardo, Carlos Alberto, 2017. "Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 774-790.
    2. Leng, Lijian & Li, Hui & Yuan, Xingzhong & Zhou, Wenguang & Huang, Huajun, 2018. "Bio-oil upgrading by emulsification/microemulsification: A review," Energy, Elsevier, vol. 161(C), pages 214-232.
    3. Patel, Alok & Arora, Neha & Mehtani, Juhi & Pruthi, Vikas & Pruthi, Parul A., 2017. "Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 604-616.
    4. Varun, & Singh, Paramvir & Tiwari, Samaresh Kumar & Singh, Rituparn & Kumar, Naresh, 2017. "Modification in combustion chamber geometry of CI engines for suitability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1016-1033.
    5. Verma, Puneet & Sharma, M.P. & Dwivedi, Gaurav, 2016. "Impact of alcohol on biodiesel production and properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 319-333.
    6. T. M. Yunus Khan, 2020. "A Review of Performance-Enhancing Innovative Modifications in Biodiesel Engines," Energies, MDPI, vol. 13(17), pages 1-22, August.
    7. Mohanan, Athira & Bouzidi, Laziz & Narine, Suresh S., 2016. "Mitigating crystallization of saturated FAMEs in biodiesel 6: The binary phase behavior of 1, 2-dioleoyl-3-stearoyl sn-glycerol – Methyl stearate," Energy, Elsevier, vol. 100(C), pages 273-284.
    8. Leng, Lijian & Han, Pei & Yuan, Xingzhong & Li, Jun & Zhou, Wenguang, 2018. "Biodiesel microemulsion upgrading and thermogravimetric study of bio-oil produced by liquefaction of different sludges," Energy, Elsevier, vol. 153(C), pages 1061-1072.
    9. Lawan, Ibrahim & Zhou, Weiming & Garba, Zaharaddeen Nasiru & Zhang, Mingxin & Yuan, Zhanhui & Chen, Lihui, 2019. "Critical insights into the effects of bio-based additives on biodiesels properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 83-95.
    10. Stefan Ptak & Wojciech Krasodomski & Magdalena Żółty, 2022. "Improvement in Low-Temperature Properties of Fatty Acid Methyl Esters," Energies, MDPI, vol. 15(13), pages 1-12, June.
    11. Can, Özer & Baklacioglu, Tolga & Özturk, Erkan & Turan, Onder, 2022. "Artificial neural networks modeling of combustion parameters for a diesel engine fueled with biodiesel fuel," Energy, Elsevier, vol. 247(C).
    12. Verma, Puneet & Sharma, M.P., 2016. "Review of process parameters for biodiesel production from different feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1063-1071.
    13. Patel, Anil Kumar & Singhania, Reeta Rani & Dong, Cheng-Di & Obulisami, Parthiba Karthikeyan & Sim, Sang Jun, 2021. "Mixotrophic biorefinery: A promising algal platform for sustainable biofuels and high value coproducts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    14. Yano Surya Pradana & I Gusti B. N. Makertihartha & Antonius Indarto & Tirto Prakoso & Tatang Hernas Soerawidjaja, 2024. "A Review of Biodiesel Cold Flow Properties and Its Improvement Methods: Towards Sustainable Biodiesel Application," Energies, MDPI, vol. 17(18), pages 1-43, September.
    15. Laura Aguado-Deblas & Jesús Hidalgo-Carrillo & Felipa M. Bautista & Diego Luna & Carlos Luna & Juan Calero & Alejandro Posadillo & Antonio A. Romero & Rafael Estevez, 2020. "Diethyl Ether as an Oxygenated Additive for Fossil Diesel/Vegetable Oil Blends: Evaluation of Performance and Emission Quality of Triple Blends on a Diesel Engine," Energies, MDPI, vol. 13(7), pages 1-16, March.
    16. Chun Hsion Lim & Wei Xin Chua & Yi Wen Pang & Bing Shen How & Wendy Pei Qin Ng & Sin Yong Teng & Wei Dong Leong & Sue Lin Ngan & Hon Loong Lam, 2020. "A Diverse and Sustainable Biodiesel Supply Chain Optimisation Model Based on Properties Integration," Sustainability, MDPI, vol. 12(20), pages 1-18, October.
    17. Arridina Susan Silitonga & Teuku Meurah Indra Mahlia & Abd Halim Shamsuddin & Hwai Chyuan Ong & Jassinnee Milano & Fitranto Kusumo & Abdi Hanra Sebayang & Surya Dharma & Husin Ibrahim & Hazlina Husin , 2019. "Optimization of Cerbera manghas Biodiesel Production Using Artificial Neural Networks Integrated with Ant Colony Optimization," Energies, MDPI, vol. 12(20), pages 1-21, October.
    18. Wang, Yongqiang & Zhao, Dan & Chen, Guanyi & Liu, Shejiang & Ji, Na & Ding, Hui & Fu, Jianfeng, 2019. "Preparation of phosphotungstic acid based poly(ionic liquid) and its application to esterification of palmitic acid," Renewable Energy, Elsevier, vol. 133(C), pages 317-324.
    19. Carlos S. Osorio-González & Natali Gómez-Falcon & Fabiola Sandoval-Salas & Rahul Saini & Satinder K. Brar & Antonio Avalos Ramírez, 2020. "Production of Biodiesel from Castor Oil: A Review," Energies, MDPI, vol. 13(10), pages 1-22, May.
    20. Bora, Akash Pratim & Dhawane, Sumit H. & Anupam, Kumar & Halder, Gopinath, 2018. "Biodiesel synthesis from Mesua ferrea oil using waste shell derived carbon catalyst," Renewable Energy, Elsevier, vol. 121(C), pages 195-204.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:719-729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.