IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5469-d874120.html
   My bibliography  Save this article

Electrification of Chemical Engineering: A New Way to Intensify Chemical Processes

Author

Listed:
  • Eugenio Meloni

    (Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy)

Abstract

The increasing use of fossil fuels as an energy source has resulted in a serious problem regarding two of their main drawbacks: (i) the exhaustion of these resources and (ii) the greenhouse gas (GHG) emissions associated with their use [...]

Suggested Citation

  • Eugenio Meloni, 2022. "Electrification of Chemical Engineering: A New Way to Intensify Chemical Processes," Energies, MDPI, vol. 15(15), pages 1-3, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5469-:d:874120
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5469/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5469/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Malek Msheik & Sylvain Rodat & Stéphane Abanades, 2021. "Methane Cracking for Hydrogen Production: A Review of Catalytic and Molten Media Pyrolysis," Energies, MDPI, vol. 14(11), pages 1-35, May.
    2. Ming-Chien Hsiao & Peir-Horng Liao & Nguyen Vu Lan & Shuhn-Shyurng Hou, 2021. "Enhancement of Biodiesel Production from High-Acid-Value Waste Cooking Oil via a Microwave Reactor Using a Homogeneous Alkaline Catalyst," Energies, MDPI, vol. 14(2), pages 1-11, January.
    3. Haris Mahmood Khan & Tanveer Iqbal & M. A. Mujtaba & Manzoore Elahi M. Soudagar & Ibham Veza & I. M. Rizwanul Fattah, 2021. "Microwave Assisted Biodiesel Production Using Heterogeneous Catalysts," Energies, MDPI, vol. 14(23), pages 1-16, December.
    4. Eugenio Meloni & Giuseppina Iervolino & Concetta Ruocco & Simona Renda & Giovanni Festa & Marco Martino & Vincenzo Palma, 2022. "Electrified Hydrogen Production from Methane for PEM Fuel Cells Feeding: A Review," Energies, MDPI, vol. 15(10), pages 1-34, May.
    5. George Hurst & Juan Maria González-Carballo & Lubomira Tosheva & Silvia Tedesco, 2021. "Synergistic Catalytic Effect of Sulphated Zirconia—HCl System for Levulinic Acid and Solid Residue Production Using Microwave Irradiation," Energies, MDPI, vol. 14(6), pages 1-13, March.
    6. Nabila Shamim & Shuza Binzaid & Jorge Federico Gabitto & John Okyere Attia, 2021. "A Combined Chemical-Electrochemical Process to Capture CO 2 and Produce Hydrogen and Electricity," Energies, MDPI, vol. 14(18), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manfred Dollinger & Gerhard Fischerauer, 2023. "Physics-Based Prediction for the Consumption and Emissions of Passenger Vehicles and Light Trucks up to 2050," Energies, MDPI, vol. 16(8), pages 1-29, April.
    2. Sirui Tong & Bin Miao & Lan Zhang & Siew Hwa Chan, 2022. "Decarbonizing Natural Gas: A Review of Catalytic Decomposition and Carbon Formation Mechanisms," Energies, MDPI, vol. 15(7), pages 1-30, April.
    3. Eugenio Meloni & Marco Martino & Mariaconcetta Pierro & Pluton Pullumbi & Federico Brandani & Vincenzo Palma, 2022. "MW-Assisted Regeneration of 13X Zeolites after N 2 O Adsorption from Concentrated Streams: A Process Intensification," Energies, MDPI, vol. 15(11), pages 1-22, June.
    4. Oleg A. Kolenchukov & Kirill A. Bashmur & Vladimir V. Bukhtoyarov & Sergei O. Kurashkin & Vadim S. Tynchenko & Elena V. Tsygankova & Roman B. Sergienko & Vladislav V. Kukartsev, 2022. "Experimental Study of Oil Non-Condensable Gas Pyrolysis in a Stirred-Tank Reactor for Catalysis of Hydrogen and Hydrogen-Containing Mixtures Production," Energies, MDPI, vol. 15(22), pages 1-16, November.
    5. Mattia Boscherini & Alba Storione & Matteo Minelli & Francesco Miccio & Ferruccio Doghieri, 2023. "New Perspectives on Catalytic Hydrogen Production by the Reforming, Partial Oxidation and Decomposition of Methane and Biogas," Energies, MDPI, vol. 16(17), pages 1-33, September.
    6. Das, Arpita & Li, Hui & Kataki, Rupam & Agrawal, Pratibha S. & Moyon, N.S. & Gurunathan, Baskar & Rokhum, Samuel Lalthazuala, 2023. "Terminalia arjuna bark – A highly efficient renewable heterogeneous base catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 212(C), pages 185-196.
    7. M. A. Hazrat & M. G. Rasul & M. M. K. Khan & N. Ashwath & I. M. R. Fattah & Hwai Chyuan Ong & T. M. I. Mahlia, 2023. "Biodiesel production from transesterification of Australian Brassica napus L. oil: optimisation and reaction kinetic model development," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12247-12272, November.
    8. Omar Aboelazayem & Mamdouh Gadalla & Basudeb Saha, 2022. "Comprehensive Optimisation of Biodiesel Production Conditions via Supercritical Methanolysis of Waste Cooking Oil," Energies, MDPI, vol. 15(10), pages 1-22, May.
    9. Labanca, A.R.C. & Cunha, A.G. & Ribeiro, R.P. & Zucolotto, C.G. & Cevolani, M.B. & Schettino, M.A., 2022. "Technological solution for distributing vehicular hydrogen using dry plasma reforming of natural gas and biogas," Renewable Energy, Elsevier, vol. 201(P2), pages 11-21.
    10. Ming-Chien Hsiao & Peir-Horng Liao & Kuo-Chou Yang & Nguyen Vu Lan & Shuhn-Shyurng Hou, 2022. "Enhanced Biodiesel Synthesis via a Homogenizer-Assisted Two-Stage Conversion Process Using Waste Edible Oil as Feedstock," Energies, MDPI, vol. 15(23), pages 1-15, November.
    11. Razmi, Amir Reza & Hanifi, Amir Reza & Shahbakhti, Mahdi, 2024. "Techno-economic analysis of a novel concept for the combination of methane pyrolysis in molten salt with heliostat solar field," Energy, Elsevier, vol. 301(C).
    12. Koguleshun Subramaniam & Kang Yao Wong & Kok Hoe Wong & Cheng Tung Chong & Jo-Han Ng, 2024. "Enhancing Biodiesel Production: A Review of Microchannel Reactor Technologies," Energies, MDPI, vol. 17(7), pages 1-37, March.
    13. R, Gopi & Thangarasu, Vinoth & Vinayakaselvi M, Angkayarkan & Ramanathan, Anand, 2022. "A critical review of recent advancements in continuous flow reactors and prominent integrated microreactors for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    14. Mirkarimi, S.M.R. & Bensaid, S. & Negro, V. & Chiaramonti, D., 2023. "Review of methane cracking over carbon-based catalyst for energy and fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    15. Gayatri Udaysinh Ingale & Hyun-Min Kwon & Soohwa Jeong & Dongho Park & Whidong Kim & Byeingryeol Bang & Young-Il Lim & Sung Won Kim & Youn-Bae Kang & Jungsoo Mun & Sunwoo Jun & Uendo Lee, 2022. "Assessment of Greenhouse Gas Emissions from Hydrogen Production Processes: Turquoise Hydrogen vs. Steam Methane Reforming," Energies, MDPI, vol. 15(22), pages 1-20, November.
    16. Nadaleti, Willian Cézar & Cardozo, Emanuélle & Bittencourt Machado, Jones & Maximilla Pereira, Peterson & Costa dos Santos, Maele & Gomes de Souza, Eduarda & Haertel, Paula & Kunde Correa, Erico & Vie, 2023. "Hydrogen and electricity potential generation from rice husks and persiculture biomass in Rio Grande do Sul, Brazil," Renewable Energy, Elsevier, vol. 216(C).
    17. Raza, Jehangeer & Khoja, Asif Hussain & Anwar, Mustafa & Saleem, Faisal & Naqvi, Salman Raza & Liaquat, Rabia & Hassan, Muhammad & Javaid, Rahat & Qazi, Umair Yaqub & Lumbers, Brock, 2022. "Methane decomposition for hydrogen production: A comprehensive review on catalyst selection and reactor systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Go, Yujin & Kim, Suyoung & Chang, Ye Ji & Won, Geunhye & Kim, Sung Won, 2024. "Enhanced thermal efficiency of solar liquid tin receiver with carbon black-reinforced carbon nanotube absorber," Renewable Energy, Elsevier, vol. 228(C).
    19. Ming-Chien Hsiao & Wei-Ting Lin & Wei-Cheng Chiu & Shuhn-Shyurng Hou, 2021. "Two-Stage Biodiesel Synthesis from Used Cooking Oil with a High Acid Value via an Ultrasound-Assisted Method," Energies, MDPI, vol. 14(12), pages 1-14, June.
    20. Abuseada, Mostafa & Fisher, Timothy S., 2023. "Continuous solar-thermal methane pyrolysis for hydrogen and graphite production by roll-to-roll processing," Applied Energy, Elsevier, vol. 352(C).

    More about this item

    Keywords

    n/a;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5469-:d:874120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.