IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v115y2019ics1364032119305544.html
   My bibliography  Save this article

Insight into the catalytic conversion of palm oil into biodiesel using Na+/K+ trapped muscovite/phillipsite composite as a novel catalyst: Effect of ultrasonic irradiation and mechanism

Author

Listed:
  • Abukhadra, Mostafa R.
  • Salam, Mohamed Abdel
  • Ibrahim, Sherouk M.

Abstract

A novel composite of muscovite/synthetic zeolite (phillipsite) (Mu/Pz) was synthesized in an open system by the alkaline modification at 150 °C under stirring of speed 600 rpm for 22 h. The composite was characterized as a novel, low cost and effective basic catalyst in the transesterification conversion of palm oil into biodiesel. The catalytic properties of Mu/PZ were studied based on several controlling factors by normal stirring and ultrasonic irradiation as mixing techniques. The maximum biodiesel yield obtained by normal stirring is 94% and was accomplished after adjusting the controlling factors at 180 min as conversion interval, 20:1 as the incorporated methanol-to-oil molar ratio, 100 °C as reaction temperature, 5 wt, % as a Mu/Pz loading and 1300 rpm as a stirring speed. The influence of ultrasonic irradiation was addressed within a range from power 20% to power 60% and the best results were achieved using ultrasonic power of 60%. At the same conducting conditions of temperature, Mu/Pz loading, and the incorporated methanol-to-oil ratio, the biodiesel yield attained 97.8% after 90 min by using ultrasonic irradiation as a mixing method at 60% power. The stability study of Mu/Pz catalyst revealed high reusability properties for five cycles using three regeneration solvents of distilled water, methanol and acetone with clear preferences for using the organic solvents. The specifications of the obtained biodiesel samples by both methods match the biodiesel requirements of the STM-D-6571 as well as the EN-14214 international standards.

Suggested Citation

  • Abukhadra, Mostafa R. & Salam, Mohamed Abdel & Ibrahim, Sherouk M., 2019. "Insight into the catalytic conversion of palm oil into biodiesel using Na+/K+ trapped muscovite/phillipsite composite as a novel catalyst: Effect of ultrasonic irradiation and mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
  • Handle: RePEc:eee:rensus:v:115:y:2019:i:c:s1364032119305544
    DOI: 10.1016/j.rser.2019.109346
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119305544
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109346?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. José María Encinar & Ana Pardal & Nuria Sánchez & Sergio Nogales, 2018. "Biodiesel by Transesterification of Rapeseed Oil Using Ultrasound: A Kinetic Study of Base-Catalysed Reactions," Energies, MDPI, vol. 11(9), pages 1-13, August.
    2. Narula, Vishal & Khan, Mohd. Fazil & Negi, Ankit & Kalra, Shashvat & Thakur, Aman & Jain, Siddharth, 2017. "Low temperature optimization of biodiesel production from algal oil using CaO and CaO/Al2O3 as catalyst by the application of response surface methodology," Energy, Elsevier, vol. 140(P1), pages 879-884.
    3. Ma, Yingqun & Wang, Qunhui & Sun, Xiaohong & Wu, Chuanfu & Gao, Zhen, 2017. "Kinetics studies of biodiesel production from waste cooking oil using FeCl3-modified resin as heterogeneous catalyst," Renewable Energy, Elsevier, vol. 107(C), pages 522-530.
    4. Banerjee, Avik & Guria, Chandan & Maiti, Subodh K., 2016. "Fertilizer assisted optimal cultivation of microalgae using response surface method and genetic algorithm for biofuel feedstock," Energy, Elsevier, vol. 115(P1), pages 1272-1290.
    5. Nongbe, Medy C. & Ekou, Tchirioua & Ekou, Lynda & Yao, Kouassi Benjamin & Le Grognec, Erwan & Felpin, François-Xavier, 2017. "Biodiesel production from palm oil using sulfonated graphene catalyst," Renewable Energy, Elsevier, vol. 106(C), pages 135-141.
    6. Li, Bowen & Li, Yanfei & Liu, Haoye & Liu, Fang & Wang, Zhi & Wang, Jianxin, 2017. "Combustion and emission characteristics of diesel engine fueled with biodiesel/PODE blends," Applied Energy, Elsevier, vol. 206(C), pages 425-431.
    7. Doyle, Aidan M. & Albayati, Talib M. & Abbas, Ammar S. & Alismaeel, Ziad T., 2016. "Biodiesel production by esterification of oleic acid over zeolite Y prepared from kaolin," Renewable Energy, Elsevier, vol. 97(C), pages 19-23.
    8. Metawea, Rodaina & Zewail, Taghreed & El-Ashtoukhy, El-Sayed & El Gheriany, Iman & Hamad, Hesham, 2018. "Process intensification of the transesterification of palm oil to biodiesel in a batch agitated vessel provided with mesh screen extended baffles," Energy, Elsevier, vol. 158(C), pages 111-120.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Qing-li & Gu, Heng & Ke, Zengguang, 2018. "Congeneration biodiesel, ricinine and nontoxic meal from castor seed," Renewable Energy, Elsevier, vol. 120(C), pages 51-59.
    2. Wongwuttanasatian, Tanakorn & Jookjantra, Kittichai, 2020. "Effect of dual-frequency pulsed ultrasonic excitation and catalyst size for biodiesel production," Renewable Energy, Elsevier, vol. 152(C), pages 1220-1226.
    3. Kuljiraseth, Jirayu & Kumpradit, Thanakorn & Leungcharoenwattana, Tuangrat & Poo-arporn, Yingyot & Jitkarnka, Sirirat, 2020. "Integrated glycerol- and ethanol-based chemical synthesis routes using Cu–Mg–Al LDH-derived catalysts without external hydrogen: Intervention of bio-ethanol co-fed with glycerol," Renewable Energy, Elsevier, vol. 156(C), pages 975-985.
    4. Li, Yu & Li, Hailin & Guo, Hongsheng & Wang, Hu & Yao, Mingfa, 2018. "A numerical study on the chemical kinetics process during auto-ignition of n-heptane in a direct injection compression ignition engine," Applied Energy, Elsevier, vol. 212(C), pages 909-918.
    5. D'Souza, Reena & Vats, Tripti & Chattree, Amit & Siril, Prem Felix, 2018. "Graphene supported magnetically separable solid acid catalyst for the single step conversion of waste cooking oil to biodiesel," Renewable Energy, Elsevier, vol. 126(C), pages 1064-1073.
    6. Md Modassir Khan & Arun Kumar Kadian & Rabindra Prasad Sharma & S M Mozammil Hasnain & Ahmed Mohamed & Adham E. Ragab & Ali Zare & Shatrudhan Pandey, 2023. "Emission Reduction and Performance Enhancement of CI Engine Propelled by Neem Biodiesel-Neem Oil-Decanol-Diesel Blends at High Injection Pressure," Sustainability, MDPI, vol. 15(11), pages 1-18, June.
    7. Agata Mlonka-Mędrala, 2023. "Recent Findings on Fly Ash-Derived Zeolites Synthesis and Utilization According to the Circular Economy Concept," Energies, MDPI, vol. 16(18), pages 1-21, September.
    8. E, Jiaqiang & Pham, MinhHieu & Deng, Yuanwang & Nguyen, Tuannghia & Duy, VinhNguyen & Le, DucHieu & Zuo, Wei & Peng, Qingguo & Zhang, Zhiqing, 2018. "Effects of injection timing and injection pressure on performance and exhaust emissions of a common rail diesel engine fueled by various concentrations of fish-oil biodiesel blends," Energy, Elsevier, vol. 149(C), pages 979-989.
    9. Lani, Nurul Saadiah & Ngadi, Norzita & Inuwa, Ibrahim Mohammed, 2020. "New route for the synthesis of silica-supported calcium oxide catalyst in biodiesel production," Renewable Energy, Elsevier, vol. 156(C), pages 1266-1277.
    10. Chiong, Meng-Choung & Kang, Hooi-Siang & Shaharuddin, Nik Mohd Ridzuan & Mat, Shabudin & Quen, Lee Kee & Ten, Ki-Hong & Ong, Muk Chen, 2021. "Challenges and opportunities of marine propulsion with alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    11. Ni, Zihao & Zhai, Yuling & Li, Fashe & Wang, Hua & Yang, Kai & Wang, Bican & Chen, Yu, 2020. "Reaction kinetics analysis of branched-chain alkyl esters of palmitic acid and cold flow properties," Renewable Energy, Elsevier, vol. 147(P1), pages 719-729.
    12. Long, Feng & Liu, Weiguo & Jiang, Xia & Zhai, Qiaolong & Cao, Xincheng & Jiang, Jianchun & Xu, Junming, 2021. "State-of-the-art technologies for biofuel production from triglycerides: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    13. Singh, Harshita & Varanasi, Jhansi L. & Banerjee, Srijoni & Das, Debabrata, 2019. "Production of carbohydrate enrich microalgal biomass as a bioenergy feedstock," Energy, Elsevier, vol. 188(C).
    14. Chakrapani Nagappan Kowthaman & S. M. Ashrafur Rahman & I. M. R. Fattah, 2023. "Exploring the Potential of Lignocellulosic Biomass-Derived Polyoxymethylene Dimethyl Ether as a Sustainable Fuel for Internal Combustion Engines," Energies, MDPI, vol. 16(12), pages 1-18, June.
    15. Veljković, Vlada B. & Biberdžić, Milan O. & Banković-Ilić, Ivana B. & Djalović, Ivica G. & Tasić, Marija B. & Nježić, Zvonko B. & Stamenković, Olivera S., 2018. "Biodiesel production from corn oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 531-548.
    16. Mazen A. Eldeeb & Benjamin Akih-Kumgeh, 2018. "Recent Trends in the Production, Combustion and Modeling of Furan-Based Fuels," Energies, MDPI, vol. 11(3), pages 1-47, February.
    17. Zhu, Jishen & Jiang, Weiqiang & Yuan, Zong & Lu, Jie & Ding, Jincheng, 2024. "Esterification of tall oil fatty acid catalyzed by Zr4+-CER in fixed bed membrane reactor," Renewable Energy, Elsevier, vol. 221(C).
    18. Arridina Susan Silitonga & Teuku Meurah Indra Mahlia & Abd Halim Shamsuddin & Hwai Chyuan Ong & Jassinnee Milano & Fitranto Kusumo & Abdi Hanra Sebayang & Surya Dharma & Husin Ibrahim & Hazlina Husin , 2019. "Optimization of Cerbera manghas Biodiesel Production Using Artificial Neural Networks Integrated with Ant Colony Optimization," Energies, MDPI, vol. 12(20), pages 1-21, October.
    19. Katriina Sirviö & Seppo Niemi & Sonja Heikkilä & Jukka Kiijärvi & Michaela Hissa & Erkki Hiltunen, 2019. "Feasibility of New Liquid Fuel Blends for Medium-Speed Engines," Energies, MDPI, vol. 12(14), pages 1-10, July.
    20. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, R. & Ebadi, M.T. & Yusaf, Talal, 2018. "Novel environmentally friendly fuel: The effects of nanographene oxide additives on the performance and emission characteristics of diesel engines fuelled with Ailanthus altissima biodiesel," Renewable Energy, Elsevier, vol. 125(C), pages 283-294.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:115:y:2019:i:c:s1364032119305544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.