IDEAS home Printed from https://ideas.repec.org/a/spr/decfin/v44y2021i2d10.1007_s10203-021-00345-8.html
   My bibliography  Save this article

A new approach to wind power futures pricing

Author

Listed:
  • Markus Hess

Abstract

We propose a new model for the pricing of wind power futures written on the wind power production index. Our approach is based on an arithmetic multi-factor pure-jump Ornstein–Uhlenbeck setup with time-dependent coefficients. We express the wind power production index and the corresponding futures price in terms of Fourier integrals and derive the related time dynamics. We conclude the paper by an investigation of the risk premium associated with our wind power model.

Suggested Citation

  • Markus Hess, 2021. "A new approach to wind power futures pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1235-1252, December.
  • Handle: RePEc:spr:decfin:v:44:y:2021:i:2:d:10.1007_s10203-021-00345-8
    DOI: 10.1007/s10203-021-00345-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10203-021-00345-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10203-021-00345-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fred Espen Benth & Anca Pircalabu, 2018. "A non-Gaussian Ornstein–Uhlenbeck model for pricing wind power futures," Applied Mathematical Finance, Taylor & Francis Journals, vol. 25(1), pages 36-65, January.
    2. Markus Hess, 2018. "Pricing Temperature Derivatives Under Weather Forecasts," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(05), pages 1-34, August.
    3. Fred Espen Benth & Jūratė Šaltytė Benth, 2012. "Modeling and Pricing in Financial Markets for Weather Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8457, August.
    4. Huisman, Ronald & Kilic, Mehtap, 2012. "Electricity Futures Prices: Indirect Storability, Expectations, and Risk Premiums," Energy Economics, Elsevier, vol. 34(4), pages 892-898.
    5. Benth, Fred Espen & Saltyte Benth, Jurate, 2009. "Dynamic pricing of wind futures," Energy Economics, Elsevier, vol. 31(1), pages 16-24, January.
    6. Markus Hess, 2016. "Modeling and pricing precipitation derivatives under weather forecasts," ULB Institutional Repository 2013/247729, ULB -- Universite Libre de Bruxelles.
    7. Fred Espen Benth & Jūratė Šaltytė Benth, 2012. "Financial markets for weather," World Scientific Book Chapters, in: Modeling and Pricing in Financial Markets for Weather Derivatives, chapter 1, pages 1-13, World Scientific Publishing Co. Pte. Ltd..
    8. Anca Pircalabu & Jesper Jung, 2017. "A mixed C-vine copula model for hedging price and volumetric risk in wind power trading," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1583-1600, October.
    9. Fred E. Benth & Troels S. Christensen & Victor Rohde, 2021. "Multivariate continuous-time modeling of wind indexes and hedging of wind risk," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 165-183, January.
    10. Fred Espen Benth & Luca Di Persio & Silvia Lavagnini, 2018. "Stochastic Modeling of Wind Derivatives in Energy Markets," Risks, MDPI, vol. 6(2), pages 1-21, May.
    11. Fred Espen Benth & Jan Kallsen & Thilo Meyer-Brandis, 2007. "A Non-Gaussian Ornstein-Uhlenbeck Process for Electricity Spot Price Modeling and Derivatives Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(2), pages 153-169.
    12. Gersema, Gerke & Wozabal, David, 2017. "An equilibrium pricing model for wind power futures," Energy Economics, Elsevier, vol. 65(C), pages 64-74.
    13. Markus Hess, 2016. "Modeling And Pricing Precipitation Derivatives Under Weather Forecasts," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(07), pages 1-29, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomaidis, Nikolaos S. & Christodoulou, Theodoros & Santos-Alamillos, Francisco J., 2023. "Handling the risk dimensions of wind energy generation," Applied Energy, Elsevier, vol. 339(C).
    2. Kanamura, Takashi & Homann, Lasse & Prokopczuk, Marcel, 2021. "Pricing analysis of wind power derivatives for renewable energy risk management," Applied Energy, Elsevier, vol. 304(C).
    3. Wolfgang Karl Härdle & Brenda López Cabrera & Awdesch Melzer, 2021. "Pricing wind power futures," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1083-1102, August.
    4. Július Bemš & Caner Aydin, 2022. "Introduction to weather derivatives," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(3), May.
    5. Yeny E. Rodríguez & Miguel A. Pérez-Uribe & Javier Contreras, 2021. "Wind Put Barrier Options Pricing Based on the Nordix Index," Energies, MDPI, vol. 14(4), pages 1-14, February.
    6. Takuji Matsumoto & Yuji Yamada, 2023. "Improving the Efficiency of Hedge Trading Using Higher-Order Standardized Weather Derivatives for Wind Power," Energies, MDPI, vol. 16(7), pages 1-22, March.
    7. Fred Espen Benth & Anca Pircalabu, 2018. "A non-Gaussian Ornstein–Uhlenbeck model for pricing wind power futures," Applied Mathematical Finance, Taylor & Francis Journals, vol. 25(1), pages 36-65, January.
    8. Fugui Dong & Xiaohui Ding & Lei Shi, 2019. "Wind Power Pricing Game Strategy under the China’s Market Trading Mechanism," Energies, MDPI, vol. 12(18), pages 1-17, September.
    9. Simona Franzoni & Cristian Pelizzari, 2021. "Rainfall option impact on profits of the hospitality industry through scenario correlation and copulas," Annals of Operations Research, Springer, vol. 299(1), pages 939-962, April.
    10. Fred Espen Benth & Marco Piccirilli & Tiziano Vargiolu, 2017. "Additive energy forward curves in a Heath-Jarrow-Morton framework," Papers 1709.03310, arXiv.org, revised Jun 2018.
    11. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
    12. Markus Hess, 2020. "Pricing electricity forwards under future information on the stochastic mean-reversion level," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 751-767, December.
    13. Johannes Kaufmann & Philipp Artur Kienscherf & Wolfgang Ketter, 2020. "Modeling and Managing Joint Price and Volumetric Risk for Volatile Electricity Portfolios," Energies, MDPI, vol. 13(14), pages 1-19, July.
    14. Christensen, Troels Sønderby & Pircalabu, Anca & Høg, Esben, 2019. "A seasonal copula mixture for hedging the clean spark spread with wind power futures," Energy Economics, Elsevier, vol. 78(C), pages 64-80.
    15. Yuji Yamada & Takuji Matsumoto, 2023. "Construction of Mixed Derivatives Strategy for Wind Power Producers," Energies, MDPI, vol. 16(9), pages 1-26, April.
    16. Fred Espen Benth & Luca Di Persio & Silvia Lavagnini, 2018. "Stochastic Modeling of Wind Derivatives in Energy Markets," Risks, MDPI, vol. 6(2), pages 1-21, May.
    17. Algieri, Bernardina & Leccadito, Arturo & Tunaru, Diana, 2021. "Risk premia in electricity derivatives markets," Energy Economics, Elsevier, vol. 100(C).
    18. Li, Wei & Paraschiv, Florentina, 2022. "Modelling the evolution of wind and solar power infeed forecasts," Journal of Commodity Markets, Elsevier, vol. 25(C).
    19. Fred Espen Benth & Sara Ana Solanilla Blanco, 2015. "Forward Prices As Functionals Of The Spot Path In Commodity Markets Modeled By Levy Semistationary Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 1-35.
    20. Kononovicius, Aleksejus & Kazakevičius, Rytis & Kaulakys, Bronislovas, 2022. "Resemblance of the power-law scaling behavior of a non-Markovian and nonlinear point processes," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).

    More about this item

    Keywords

    Wind power futures; Wind power production index; Arithmetic multi-factor model; Pure-jump Ornstein–Uhlenbeck process; Lévy-type process; Fourier transform; Stochastic differential equation; Risk premium;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • D52 - Microeconomics - - General Equilibrium and Disequilibrium - - - Incomplete Markets
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:decfin:v:44:y:2021:i:2:d:10.1007_s10203-021-00345-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.