IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v339y2023ics0306261923002891.html
   My bibliography  Save this article

Handling the risk dimensions of wind energy generation

Author

Listed:
  • Thomaidis, Nikolaos S.
  • Christodoulou, Theodoros
  • Santos-Alamillos, Francisco J.

Abstract

In this paper, we explore two strategies for reducing the cash flow uncertainty of wind energy producers ascribed to variable weather conditions. The first strategy is based on the idea of aggregating the output of geographically-dispersed generating units. The second strategy employs financial instruments that compensate producers for unanticipated declines in the power delivery. Using a blend of advanced weather modeling, time series analysis, simulation and optimization techniques, we empirically access the ability of the two risk management approaches to control volumetric risk in Spain. With the aid of factor analysis techniques, we proceed with the decomposition of the remaining risk levels and assess the exposure of each strategy’s revenue to systematic risk factors. Motivated by the results of this analysis, we propose new financial contracts and mixed-style strategies that are better suited to the risk position of each market player.

Suggested Citation

  • Thomaidis, Nikolaos S. & Christodoulou, Theodoros & Santos-Alamillos, Francisco J., 2023. "Handling the risk dimensions of wind energy generation," Applied Energy, Elsevier, vol. 339(C).
  • Handle: RePEc:eee:appene:v:339:y:2023:i:c:s0306261923002891
    DOI: 10.1016/j.apenergy.2023.120925
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923002891
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fred Espen Benth & Anca Pircalabu, 2018. "A non-Gaussian Ornstein–Uhlenbeck model for pricing wind power futures," Applied Mathematical Finance, Taylor & Francis Journals, vol. 25(1), pages 36-65, January.
    2. Gabrielli, Paolo & Aboutalebi, Reyhaneh & Sansavini, Giovanni, 2022. "Mitigating financial risk of corporate power purchase agreements via portfolio optimization," Energy Economics, Elsevier, vol. 109(C).
    3. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    4. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    5. Grothe, Oliver & Schnieders, Julius, 2011. "Spatial dependence in wind and optimal wind power allocation: A copula-based analysis," Energy Policy, Elsevier, vol. 39(9), pages 4742-4754, September.
    6. Roques, Fabien & Hiroux, Céline & Saguan, Marcelo, 2010. "Optimal wind power deployment in Europe--A portfolio approach," Energy Policy, Elsevier, vol. 38(7), pages 3245-3256, July.
    7. Kanamura, Takashi & Homann, Lasse & Prokopczuk, Marcel, 2021. "Pricing analysis of wind power derivatives for renewable energy risk management," Applied Energy, Elsevier, vol. 304(C).
    8. Marmidis, Grigorios & Lazarou, Stavros & Pyrgioti, Eleftheria, 2008. "Optimal placement of wind turbines in a wind park using Monte Carlo simulation," Renewable Energy, Elsevier, vol. 33(7), pages 1455-1460.
    9. Benth, Fred Espen & Saltyte Benth, Jurate, 2009. "Dynamic pricing of wind futures," Energy Economics, Elsevier, vol. 31(1), pages 16-24, January.
    10. Yeny E. Rodríguez & Miguel A. Pérez-Uribe & Javier Contreras, 2021. "Wind Put Barrier Options Pricing Based on the Nordix Index," Energies, MDPI, vol. 14(4), pages 1-14, February.
    11. Santos-Alamillos, F.J. & Thomaidis, N.S. & Quesada-Ruiz, S. & Ruiz-Arias, J.A. & Pozo-Vázquez, D., 2016. "Do current wind farms in Spain take maximum advantage of spatiotemporal balancing of the wind resource?," Renewable Energy, Elsevier, vol. 96(PA), pages 574-582.
    12. Hu, Jing & Harmsen, Robert & Crijns-Graus, Wina & Worrell, Ernst, 2019. "Geographical optimization of variable renewable energy capacity in China using modern portfolio theory," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Fred E. Benth & Troels S. Christensen & Victor Rohde, 2021. "Multivariate continuous-time modeling of wind indexes and hedging of wind risk," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 165-183, January.
    14. Fred Espen Benth & Luca Di Persio & Silvia Lavagnini, 2018. "Stochastic Modeling of Wind Derivatives in Energy Markets," Risks, MDPI, vol. 6(2), pages 1-21, May.
    15. Wolfgang Karl Härdle & Brenda López Cabrera & Awdesch Melzer, 2021. "Pricing wind power futures," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1083-1102, August.
    16. Monforti, F. & Huld, T. & Bódis, K. & Vitali, L. & D'Isidoro, M. & Lacal-Arántegui, R., 2014. "Assessing complementarity of wind and solar resources for energy production in Italy. A Monte Carlo approach," Renewable Energy, Elsevier, vol. 63(C), pages 576-586.
    17. Pérez, Beatriz & Mínguez, Roberto & Guanche, Raúl, 2013. "Offshore wind farm layout optimization using mathematical programming techniques," Renewable Energy, Elsevier, vol. 53(C), pages 389-399.
    18. Santos-Alamillos, F.J. & Pozo-Vázquez, D. & Ruiz-Arias, J.A. & Von Bremen, L. & Tovar-Pescador, J., 2015. "Combining wind farms with concentrating solar plants to provide stable renewable power," Renewable Energy, Elsevier, vol. 76(C), pages 539-550.
    19. Jushan Bai & Peng Wang, 2016. "Econometric Analysis of Large Factor Models," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 53-80, October.
    20. Grothe, Oliver & Schnieders, Julius, 2011. "Spatial Dependence in Wind and Optimal Wind Power Allocation: A Copula Based Analysis," EWI Working Papers 2011-5, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    21. Gersema, Gerke & Wozabal, David, 2017. "An equilibrium pricing model for wind power futures," Energy Economics, Elsevier, vol. 65(C), pages 64-74.
    22. Santos-Alamillos, F.J. & Thomaidis, N.S. & Usaola-García, J. & Ruiz-Arias, J.A. & Pozo-Vázquez, D., 2017. "Exploring the mean-variance portfolio optimization approach for planning wind repowering actions in Spain," Renewable Energy, Elsevier, vol. 106(C), pages 335-342.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Theodoros Christodoulou & Nikolaos S. Thomaidis & Stergios Kartsios & Ioannis Pytharoulis, 2024. "Managing the Intermittency of Wind Energy Generation in Greece," Energies, MDPI, vol. 17(4), pages 1-32, February.
    2. Yuji Yamada & Takuji Matsumoto, 2023. "Construction of Mixed Derivatives Strategy for Wind Power Producers," Energies, MDPI, vol. 16(9), pages 1-26, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Castro, Gabriel Malta & Klöckl, Claude & Regner, Peter & Schmidt, Johannes & Pereira, Amaro Olimpio, 2022. "Improvements to Modern Portfolio Theory based models applied to electricity systems," Energy Economics, Elsevier, vol. 111(C).
    2. Kanamura, Takashi & Homann, Lasse & Prokopczuk, Marcel, 2021. "Pricing analysis of wind power derivatives for renewable energy risk management," Applied Energy, Elsevier, vol. 304(C).
    3. Yuji Yamada & Takuji Matsumoto, 2023. "Construction of Mixed Derivatives Strategy for Wind Power Producers," Energies, MDPI, vol. 16(9), pages 1-26, April.
    4. Takuji Matsumoto & Yuji Yamada, 2023. "Improving the Efficiency of Hedge Trading Using Higher-Order Standardized Weather Derivatives for Wind Power," Energies, MDPI, vol. 16(7), pages 1-22, March.
    5. Gabriel Malta Castro & Claude Klockl & Peter Regner & Johannes Schmidt & Amaro Olimpio Pereira Jr, 2021. "Improvements to Modern Portfolio Theory based models applied to electricity systems," Papers 2105.08182, arXiv.org.
    6. Markus Hess, 2021. "A new approach to wind power futures pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1235-1252, December.
    7. Álvarez-García, Francisco J. & Fresno-Schmolk, Gonzalo & OrtizBevia, María J. & Cabos, William & RuizdeElvira, Antonio, 2020. "Reduction of aggregate wind power variability using Empirical Orthogonal Teleconnections: An application in the Iberian Peninsula," Renewable Energy, Elsevier, vol. 159(C), pages 151-161.
    8. Santos-Alamillos, F.J. & Thomaidis, N.S. & Usaola-García, J. & Ruiz-Arias, J.A. & Pozo-Vázquez, D., 2017. "Exploring the mean-variance portfolio optimization approach for planning wind repowering actions in Spain," Renewable Energy, Elsevier, vol. 106(C), pages 335-342.
    9. Tapia Carpio, Lucio Guido, 2021. "Mitigating the risk of photovoltaic power generation: A complementarity model of solar irradiation in diverse regions applied to Brazil," Utilities Policy, Elsevier, vol. 71(C).
    10. Christensen, Troels Sønderby & Pircalabu, Anca & Høg, Esben, 2019. "A seasonal copula mixture for hedging the clean spark spread with wind power futures," Energy Economics, Elsevier, vol. 78(C), pages 64-80.
    11. Jägemann, Cosima, 2014. "An illustrative note on the system price effect of wind and solar power - The German case," EWI Working Papers 2014-10, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    12. Pérez Odeh, Rodrigo & Watts, David & Flores, Yarela, 2018. "Planning in a changing environment: Applications of portfolio optimisation to deal with risk in the electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3808-3823.
    13. Odeh, Rodrigo Pérez & Watts, David, 2019. "Impacts of wind and solar spatial diversification on its market value: A case study of the Chilean electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 442-461.
    14. Engelhorn, Thorsten & Müsgens, Felix, 2021. "Why is Germany’s energy transition so expensive? Quantifying the costs of wind-energy decentralisation," Resource and Energy Economics, Elsevier, vol. 65(C).
    15. López Prol, Javier & de Llano Paz, Fernando & Calvo-Silvosa, Anxo & Pfenninger, Stefan & Staffell, Iain, 2024. "Wind-solar technological, spatial and temporal complementarities in Europe: A portfolio approach," Energy, Elsevier, vol. 292(C).
    16. Alexis Tantet & Marc Stéfanon & Philippe Drobinski & Jordi Badosa & Silvia Concettini & Anna Cretì & Claudia D’Ambrosio & Dimitri Thomopulos & Peter Tankov, 2019. "e 4 clim 1.0: The Energy for a Climate Integrated Model: Description and Application to Italy," Energies, MDPI, vol. 12(22), pages 1-37, November.
    17. Yuji Yamada & Takuji Matsumoto, 2021. "Going for Derivatives or Forwards? Minimizing Cashflow Fluctuations of Electricity Transactions on Power Markets," Energies, MDPI, vol. 14(21), pages 1-28, November.
    18. Obermüller, Frank, 2017. "Build Wind Capacities at Windy Locations? Assessment of System Optimal Wind Locations," EWI Working Papers 2017-9, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    19. Theodoros Christodoulou & Nikolaos S. Thomaidis & Stergios Kartsios & Ioannis Pytharoulis, 2024. "Managing the Intermittency of Wind Energy Generation in Greece," Energies, MDPI, vol. 17(4), pages 1-32, February.
    20. Grochowicz, Aleksander & Benth, Fred Espen & Zeyringer, Marianne, 2024. "Spatio-temporal smoothing and dynamics of different electricity flexibility options for highly renewable energy systems—Case study for Norway," Applied Energy, Elsevier, vol. 356(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:339:y:2023:i:c:s0306261923002891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.