IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v304y2021ics0306261921011557.html
   My bibliography  Save this article

Pricing analysis of wind power derivatives for renewable energy risk management

Author

Listed:
  • Kanamura, Takashi
  • Homann, Lasse
  • Prokopczuk, Marcel

Abstract

The objective of this study is to analyse the theoretical pricing of wind power derivatives, which is important for renewable energy risk management but has a problem in the pricing due to the illiquidity of the assets and to show the application of the theory to the practical implementation of the pricing. We make three contributions to the literature. First, to the best of our knowledge, we are the first to conduct a detailed econometric analysis of the wind power futures underlying, i.e., the electricity production based on windmills, resulting in strong support of seasonality and mean reversion in the logit-transformed wind power load factors. Second, after proposing a new model of wind power load factors based on the econometric findings, we analyse the theoretical prices of wind power futures and call option contracts to which the good-deal bounds pricing within an illiquid market situation is applied as well as we show the application of the theory to the practical pricing with the illiquidity. Third, our empirical pricing analysis shows that theoretical wind power futures prices derived using seasonal modelling more accurately reflect reality than those derived without seasonality compared to market observations, resulting in the importance of seasonality modelling in theoretical wind power derivatives pricing. In particular, considering that the upper and lower price boundaries represent the selling and the buying prices in the incomplete market, respectively, we show that the pricing of the short position is more affected by the seasonality than the pricing of the long position. Finally, we illustrate and discuss the practical applications of the results obtained in our study.

Suggested Citation

  • Kanamura, Takashi & Homann, Lasse & Prokopczuk, Marcel, 2021. "Pricing analysis of wind power derivatives for renewable energy risk management," Applied Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:appene:v:304:y:2021:i:c:s0306261921011557
    DOI: 10.1016/j.apenergy.2021.117827
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921011557
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117827?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fred Espen Benth & Anca Pircalabu, 2018. "A non-Gaussian Ornstein–Uhlenbeck model for pricing wind power futures," Applied Mathematical Finance, Taylor & Francis Journals, vol. 25(1), pages 36-65, January.
    2. John H. Cochrane & Jesus Saa-Requejo, 2000. "Beyond Arbitrage: Good-Deal Asset Price Bounds in Incomplete Markets," Journal of Political Economy, University of Chicago Press, vol. 108(1), pages 79-119, February.
    3. Eckhard Platen & Jason West, 2004. "A Fair Pricing Approach to Weather Derivatives," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(1), pages 23-53, March.
    4. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    5. M. Davis, 2001. "Pricing weather derivatives by marginal value," Quantitative Finance, Taylor & Francis Journals, vol. 1(3), pages 305-308, March.
    6. Patrick L. Brockett & Mulong Wang & Chuanhou Yang & Hong Zou, 2006. "Portfolio Effects and Valuation of Weather Derivatives," The Financial Review, Eastern Finance Association, vol. 41(1), pages 55-76, February.
    7. Benth, Fred Espen & Saltyte Benth, Jurate, 2009. "Dynamic pricing of wind futures," Energy Economics, Elsevier, vol. 31(1), pages 16-24, January.
    8. Yeny E. Rodríguez & Miguel A. Pérez-Uribe & Javier Contreras, 2021. "Wind Put Barrier Options Pricing Based on the Nordix Index," Energies, MDPI, vol. 14(4), pages 1-14, February.
    9. Kanamura, Takashi & Ohashi, Kazuhiko, 2009. "Pricing summer day options by good-deal bounds," Energy Economics, Elsevier, vol. 31(2), pages 289-297, March.
    10. Hendrik Bessembinder & Michael L. Lemmon, 2002. "Equilibrium Pricing and Optimal Hedging in Electricity Forward Markets," Journal of Finance, American Finance Association, vol. 57(3), pages 1347-1382, June.
    11. Fred Espen Benth & Luca Di Persio & Silvia Lavagnini, 2018. "Stochastic Modeling of Wind Derivatives in Energy Markets," Risks, MDPI, vol. 6(2), pages 1-21, May.
    12. Melanie Cao & Jason Wei, 2004. "Weather derivatives valuation and market price of weather risk," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 24(11), pages 1065-1089, November.
    13. Gersema, Gerke & Wozabal, David, 2017. "An equilibrium pricing model for wind power futures," Energy Economics, Elsevier, vol. 65(C), pages 64-74.
    14. Lee, Yongheon & Oren, Shmuel S., 2009. "An equilibrium pricing model for weather derivatives in a multi-commodity setting," Energy Economics, Elsevier, vol. 31(5), pages 702-713, September.
    15. A. Alexandridis & A. Zapranis, 2013. "Wind Derivatives: Modeling and Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 41(3), pages 299-326, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Usman, Ojonugwa & Iorember, Paul Terhemba & Ozkan, Oktay & Alola, Andrew Adewale, 2024. "Dampening energy security-related uncertainties in the United States: The role of green energy-technology investment and operation of transnational corporations," Energy, Elsevier, vol. 289(C).
    2. Sudeesha Warunasinghe & Anatoliy Swishchuk, 2024. "Stochastic Modeling of Wind Derivatives with Application to the Alberta Energy Market," Risks, MDPI, vol. 12(2), pages 1-26, January.
    3. Thomaidis, Nikolaos S. & Christodoulou, Theodoros & Santos-Alamillos, Francisco J., 2023. "Handling the risk dimensions of wind energy generation," Applied Energy, Elsevier, vol. 339(C).
    4. Yuji Yamada & Takuji Matsumoto, 2023. "Construction of Mixed Derivatives Strategy for Wind Power Producers," Energies, MDPI, vol. 16(9), pages 1-26, April.
    5. Giovanni Masala & Marco Micocci & Andrea Rizk, 2022. "Hedging Wind Power Risk Exposure through Weather Derivatives," Energies, MDPI, vol. 15(4), pages 1-30, February.
    6. Pan, Yue & Qin, Jianjun, 2022. "A novel probabilistic modeling framework for wind speed with highlight of extremes under data discrepancy and uncertainty," Applied Energy, Elsevier, vol. 326(C).
    7. Takuji Matsumoto & Yuji Yamada, 2023. "Improving the Efficiency of Hedge Trading Using Higher-Order Standardized Weather Derivatives for Wind Power," Energies, MDPI, vol. 16(7), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuji Yamada & Takuji Matsumoto, 2021. "Going for Derivatives or Forwards? Minimizing Cashflow Fluctuations of Electricity Transactions on Power Markets," Energies, MDPI, vol. 14(21), pages 1-28, November.
    2. Kanamura, Takashi, 2019. "Volumetric Risk Hedging Strategies and Basis Risk Premium for Solar Power," MPRA Paper 92009, University Library of Munich, Germany.
    3. Fred Espen Benth & Anca Pircalabu, 2018. "A non-Gaussian Ornstein–Uhlenbeck model for pricing wind power futures," Applied Mathematical Finance, Taylor & Francis Journals, vol. 25(1), pages 36-65, January.
    4. Takuji Matsumoto & Yuji Yamada, 2021. "Customized yet Standardized Temperature Derivatives: A Non-Parametric Approach with Suitable Basis Selection for Ensuring Robustness," Energies, MDPI, vol. 14(11), pages 1-24, June.
    5. Thomaidis, Nikolaos S. & Christodoulou, Theodoros & Santos-Alamillos, Francisco J., 2023. "Handling the risk dimensions of wind energy generation," Applied Energy, Elsevier, vol. 339(C).
    6. Matsumoto, Takuji & Yamada, Yuji, 2021. "Simultaneous hedging strategy for price and volume risks in electricity businesses using energy and weather derivatives1," Energy Economics, Elsevier, vol. 95(C).
    7. Yuji Yamada & Takuji Matsumoto, 2023. "Construction of Mixed Derivatives Strategy for Wind Power Producers," Energies, MDPI, vol. 16(9), pages 1-26, April.
    8. Yeny E. Rodríguez & Miguel A. Pérez-Uribe & Javier Contreras, 2021. "Wind Put Barrier Options Pricing Based on the Nordix Index," Energies, MDPI, vol. 14(4), pages 1-14, February.
    9. Rui Zhou & Johnny Siu-Hang Li & Jeffrey Pai, 2019. "Pricing temperature derivatives with a filtered historical simulation approach," The European Journal of Finance, Taylor & Francis Journals, vol. 25(15), pages 1462-1484, October.
    10. Wolfgang Karl Härdle & Brenda López Cabrera & Awdesch Melzer, 2021. "Pricing wind power futures," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1083-1102, August.
    11. Takuji Matsumoto & Yuji Yamada, 2023. "Improving the Efficiency of Hedge Trading Using Higher-Order Standardized Weather Derivatives for Wind Power," Energies, MDPI, vol. 16(7), pages 1-22, March.
    12. Eirini Konstantinidi & Gkaren Papazian & George Skiadopoulos, 2015. "Modeling the Dynamics of Temperature with a View to Weather Derivatives," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 17, pages 511-544, World Scientific Publishing Co. Pte. Ltd..
    13. Shinji Kuno & Kenji Tanaka & Yuji Yamada, 2022. "Effectiveness and Feasibility of Market Makers for P2P Electricity Trading," Energies, MDPI, vol. 15(12), pages 1-24, June.
    14. Markus Hess, 2021. "A new approach to wind power futures pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1235-1252, December.
    15. Fred Espen Benth & Jūratė Šaltytė Benth, 2012. "Modeling and Pricing in Financial Markets for Weather Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8457, August.
    16. Gersema, Gerke & Wozabal, David, 2017. "An equilibrium pricing model for wind power futures," Energy Economics, Elsevier, vol. 65(C), pages 64-74.
    17. Fred Espen Benth & Jūratė Šaltytė Benth & Steen Koekebakker, 2008. "Stochastic Modeling of Electricity and Related Markets," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6811, August.
    18. Patrick Brockett & Linda Goldens & Min-Ming Wen & Charles Yang, 2009. "Pricing Weather Derivatives Using the Indifference Pricing Approach," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(3), pages 303-315.
    19. Takino, Kazuhiro, 2016. "An equilibrium model for the OTC derivatives market with a collateral agreement," Journal of Commodity Markets, Elsevier, vol. 4(1), pages 41-55.
    20. Bertrand, Jean-Louis & Brusset, Xavier & Fortin, Maxime, 2015. "Assessing and hedging the cost of unseasonal weather: Case of the apparel sector," European Journal of Operational Research, Elsevier, vol. 244(1), pages 261-276.

    More about this item

    Keywords

    Wind power; Load factor; Good-deal bounds; Futures and options; Mean reversion; Seasonality;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:304:y:2021:i:c:s0306261921011557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.