IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v70y2021i4p1083-1102.html
   My bibliography  Save this article

Pricing wind power futures

Author

Listed:
  • Wolfgang Karl Härdle
  • Brenda López Cabrera
  • Awdesch Melzer

Abstract

With increasing wind power (WP) penetration an extensive amount of volatile and weather dependent energy is fed into the German electricity system. To manage the volume risk of windless days and the transfer of revenue risk from wind turbine owners to investors, WP derivatives were introduced. These insurance‐like securities allow the hedging of the volume risk of unstable WP production on exchanges such as NASDAQ and EEX. We present a modern and powerful methodology to model weather derivatives, with very skewed underlying assets, incorporating techniques from extreme event modelling to tune seasonal volatility. We compare transformed Gaussian and non‐Gaussian CARMA(p, q) models. Our results indicate that the Gaussian CARMA(p, q) model is preferred over the non‐Gaussian alternative. Out‐of‐sample backtesting results show good performance, with respect to benchmarks, employing smooth market price of risk (MPR) estimates based on NASDAQ weekly and monthly German WP futures prices. A seasonal MPR of a smile shape is observed, with slightly positive values in times of high volatility, for example, winter months, and negative values, in times of low volatility and production, for example, in summer months. We conclude that producers pay premiums to insure stable revenue steams, while investors pay premiums when weather risk is high.

Suggested Citation

  • Wolfgang Karl Härdle & Brenda López Cabrera & Awdesch Melzer, 2021. "Pricing wind power futures," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1083-1102, August.
  • Handle: RePEc:bla:jorssc:v:70:y:2021:i:4:p:1083-1102
    DOI: 10.1111/rssc.12499
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12499
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12499?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richards, Timothy J. & Manfredo, Mark R. & Sanders, Dwight R., 2004. "Pricing Weather Derivatives," Working Papers 28536, Arizona State University, Morrison School of Agribusiness and Resource Management.
    2. Jewson,Stephen & Brix,Anders, 2005. "Weather Derivative Valuation," Cambridge Books, Cambridge University Press, number 9780521843713, September.
    3. Francisco Pérez-González & Hayong Yun, 2013. "Risk Management and Firm Value: Evidence from Weather Derivatives," Journal of Finance, American Finance Association, vol. 68(5), pages 2143-2176, October.
    4. Pavel Cizek & Wolfgang Karl Härdle & Rafal Weron, 2005. "Statistical Tools for Finance and Insurance," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0501, December.
    5. Benth, Fred Espen & Saltyte Benth, Jurate, 2009. "Dynamic pricing of wind futures," Energy Economics, Elsevier, vol. 31(1), pages 16-24, January.
    6. Sean D. Campbell & Francis X. Diebold, 2005. "Weather Forecasting for Weather Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 6-16, March.
    7. Ziel, Florian & Croonenbroeck, Carsten & Ambach, Daniel, 2016. "Forecasting wind power – Modeling periodic and non-linear effects under conditional heteroscedasticity," Applied Energy, Elsevier, vol. 177(C), pages 285-297.
    8. Wolfgang Karl Härdle & Brenda López Cabrera, 2012. "The Implied Market Price of Weather Risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 19(1), pages 59-95, February.
    9. Benth, Fred Espen & Klüppelberg, Claudia & Müller, Gernot & Vos, Linda, 2014. "Futures pricing in electricity markets based on stable CARMA spot models," Energy Economics, Elsevier, vol. 44(C), pages 392-406.
    10. Fred Espen Benth & Jūratė Šaltytė Benth & Steen Koekebakker, 2008. "Stochastic Modeling of Electricity and Related Markets," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6811, August.
    11. Melanie Cao & Jason Wei, 2004. "Weather derivatives valuation and market price of weather risk," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 24(11), pages 1065-1089, November.
    12. Härdle, Wolfgang Karl & Osipenko, Maria, 2017. "Dynamic valuation of weather derivatives under default risk," SFB 649 Discussion Papers 2017-005, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    13. Wolfgang Karl Härdle & Brenda López Cabrera & Ostap Okhrin & Weining Wang, 2016. "Localizing Temperature Risk," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1491-1508, October.
    14. Fred Espen Benth & Jūratė Šaltytė Benth, 2012. "Modeling and Pricing in Financial Markets for Weather Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8457, August.
    15. López Cabrera, Brenda & Odening, Martin & Ritter, Matthias, 2013. "Pricing rainfall futures at the CME," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4286-4298.
    16. Fred Espen Benth & Jūratė Šaltytė Benth, 2011. "Weather Derivatives and Stochastic Modelling of Temperature," International Journal of Stochastic Analysis, Hindawi, vol. 2011, pages 1-21, July.
    17. P. Pinson, 2012. "Very-short-term probabilistic forecasting of wind power with generalized logit–normal distributions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 61(4), pages 555-576, August.
    18. Ritter, Matthias & Shen, Zhiwei & López Cabrera, Brenda & Odening, Martin & Deckert, Lars, 2015. "Designing an index for assessing wind energy potential," Renewable Energy, Elsevier, vol. 83(C), pages 416-424.
    19. Ole E. Barndorff-Nielsen & Fred Espen Benth & Almut E. D. Veraart, 2013. "Modelling energy spot prices by volatility modulated L\'{e}vy-driven Volterra processes," Papers 1307.6332, arXiv.org.
    20. Dwight R. Sanders, 2004. "Pricing Weather Derivatives," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(4), pages 1005-1017.
    21. Fred Espen Benth & Jūratė Šaltytė Benth, 2012. "Financial markets for weather," World Scientific Book Chapters, in: Modeling and Pricing in Financial Markets for Weather Derivatives, chapter 1, pages 1-13, World Scientific Publishing Co. Pte. Ltd..
    22. Aigner, D J & Amemiya, Takeshi & Poirier, Dale J, 1976. "On the Estimation of Production Frontiers: Maximum Likelihood Estimation of the Parameters of a Discontinuous Density Function," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 17(2), pages 377-396, June.
    23. Hung‐Hsi Huang & Yung‐Ming Shiu & Pei‐Syun Lin, 2008. "HDD and CDD option pricing with market price of weather risk for Taiwan," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(8), pages 790-814, August.
    24. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    25. Gersema, Gerke & Wozabal, David, 2017. "An equilibrium pricing model for wind power futures," Energy Economics, Elsevier, vol. 65(C), pages 64-74.
    26. A. Alexandridis & A. Zapranis, 2013. "Wind Derivatives: Modeling and Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 41(3), pages 299-326, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomaidis, Nikolaos S. & Christodoulou, Theodoros & Santos-Alamillos, Francisco J., 2023. "Handling the risk dimensions of wind energy generation," Applied Energy, Elsevier, vol. 339(C).
    2. Mosquera-López, Stephania & Uribe, Jorge M., 2022. "Pricing the risk due to weather conditions in small variable renewable energy projects," Applied Energy, Elsevier, vol. 322(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Melzer, Awdesch & Härdle, Wolfgang Karl & López Cabrera, Brenda, 2017. "Pricing Green Financial Products," SFB 649 Discussion Papers 2017-020, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    2. repec:hum:wpaper:sfb649dp2017-020 is not listed on IDEAS
    3. Groll, Andreas & López-Cabrera, Brenda & Meyer-Brandis, Thilo, 2016. "A consistent two-factor model for pricing temperature derivatives," Energy Economics, Elsevier, vol. 55(C), pages 112-126.
    4. repec:hum:wpaper:sfb649dp2014-006 is not listed on IDEAS
    5. Rui Zhou & Johnny Siu-Hang Li & Jeffrey Pai, 2019. "Pricing temperature derivatives with a filtered historical simulation approach," The European Journal of Finance, Taylor & Francis Journals, vol. 25(15), pages 1462-1484, October.
    6. Fred Espen Benth & Anca Pircalabu, 2018. "A non-Gaussian Ornstein–Uhlenbeck model for pricing wind power futures," Applied Mathematical Finance, Taylor & Francis Journals, vol. 25(1), pages 36-65, January.
    7. Július Bemš & Caner Aydin, 2022. "Introduction to weather derivatives," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(3), May.
    8. Benth, Fred & Härdle, Wolfgang Karl & López Cabrera, Brenda, 2009. "Pricing of Asian temperature risk," SFB 649 Discussion Papers 2009-046, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    9. repec:hum:wpaper:sfb649dp2009-046 is not listed on IDEAS
    10. Fred Espen Benth & Jūratė Šaltytė Benth, 2012. "Modeling and Pricing in Financial Markets for Weather Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8457, August.
    11. Jr‐Wei Huang & Sharon S. Yang & Chuang‐Chang Chang, 2018. "Modeling temperature behaviors: Application to weather derivative valuation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(9), pages 1152-1175, September.
    12. L. Kermiche & N. Vuillermet, 2016. "Weather derivatives structuring and pricing: a sustainable agricultural approach in Africa," Applied Economics, Taylor & Francis Journals, vol. 48(2), pages 165-177, January.
    13. Wolfgang Karl Härdle & Brenda López Cabrera, 2012. "The Implied Market Price of Weather Risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 19(1), pages 59-95, February.
    14. Prabakaran, Sellamuthu & Garcia, Isabel C. & Mora, Jose U., 2020. "A temperature stochastic model for option pricing and its impacts on the electricity market," Economic Analysis and Policy, Elsevier, vol. 68(C), pages 58-77.
    15. Heng Xiong & Rogemar Mamon, 2018. "Putting a price tag on temperature," Computational Management Science, Springer, vol. 15(2), pages 259-296, June.
    16. Andrea Martínez Salgueiro & Maria-Antonia Tarrazon-Rodon, 2021. "Weather derivatives to mitigate meteorological risks in tourism management: An empirical application to celebrations of Comunidad Valenciana (Spain)," Tourism Economics, , vol. 27(4), pages 591-613, June.
    17. Andrea Martínez Salgueiro & Maria-Antonia Tarrazon-Rodon, 2020. "Approaching rainfall-based weather derivatives pricing and operational challenges," Review of Derivatives Research, Springer, vol. 23(2), pages 163-190, July.
    18. Eirini Konstantinidi & Gkaren Papazian & George Skiadopoulos, 2015. "Modeling the Dynamics of Temperature with a View to Weather Derivatives," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 17, pages 511-544, World Scientific Publishing Co. Pte. Ltd..
    19. Wei Yuan & Ahmet Göncü & Giray Ökten, 2015. "Estimating sensitivities of temperature-based weather derivatives," Applied Economics, Taylor & Francis Journals, vol. 47(19), pages 1942-1955, April.
    20. A. Alexandridis & A. Zapranis, 2013. "Wind Derivatives: Modeling and Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 41(3), pages 299-326, March.
    21. Yeny E. Rodríguez & Miguel A. Pérez-Uribe & Javier Contreras, 2021. "Wind Put Barrier Options Pricing Based on the Nordix Index," Energies, MDPI, vol. 14(4), pages 1-14, February.
    22. Fred Espen Benth & Asma Khedher & Mich`ele Vanmaele, 2017. "Pricing of commodity derivatives on processes with memory," Papers 1711.00307, arXiv.org.
    23. Fred Espen Benth & Asma Khedher & Michèle Vanmaele, 2020. "Pricing of Commodity Derivatives on Processes with Memory," Risks, MDPI, vol. 8(1), pages 1-32, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:70:y:2021:i:4:p:1083-1102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.