IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v19y2016i07ns0219024916500515.html
   My bibliography  Save this article

Modeling And Pricing Precipitation Derivatives Under Weather Forecasts

Author

Listed:
  • MARKUS HESS

    (Université Libre de Bruxelles, Mathematics Department, Actuarial Sciences, CP 210, Boulevard du Triomphe, B-1050 Brussels, Belgium)

Abstract

We propose a pure jump precipitation model embedded in an enlarged filtration framework accounting for weather forecasts. Under different anticipative approaches, we define precipitation swap/futures prices and also introduce the notion of an “information premium”. In contrast to some other models in the literature, our forward-looking swap price representations admit time-varying stochastic dynamics. In these setups, swap price processes under the physical and risk-neutral measure turn out to be indistinguishable. We also consider an extended multi-location model measuring precipitation in several locations. In order to price options on precipitation derivatives under weather forecasts modeled by enlarged filtrations, we develop customized approximation procedures involving complex power series expansions and wavelet transform techniques.

Suggested Citation

  • Markus Hess, 2016. "Modeling And Pricing Precipitation Derivatives Under Weather Forecasts," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(07), pages 1-29, November.
  • Handle: RePEc:wsi:ijtafx:v:19:y:2016:i:07:n:s0219024916500515
    DOI: 10.1142/S0219024916500515
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024916500515
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024916500515?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fred Espen Benth & Jurate Saltyte-Benth, 2005. "Stochastic Modelling of Temperature Variations with a View Towards Weather Derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(1), pages 53-85.
    2. Gunther Leobacher & Philip Ngare, 2011. "On Modelling and Pricing Rainfall Derivatives with Seasonality," Applied Mathematical Finance, Taylor & Francis Journals, vol. 18(1), pages 71-91.
    3. Andrea Barth & Fred Espen Benth & Jurgen Potthoff, 2011. "Hedging of Spatial Temperature Risk with Market-Traded Futures," Applied Mathematical Finance, Taylor & Francis Journals, vol. 18(2), pages 93-117.
    4. René Carmona & Pavel Diko, 2005. "Pricing Precipitation Based Derivatives," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(07), pages 959-988.
    5. Fred ESPEN Benth & Jurate saltyte Benth, 2007. "The volatility of temperature and pricing of weather derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 553-561.
    6. Ragnhild Noven & Almut Veraart & Axel Gandy, 2015. "A Lévy-driven rainfall model with applications to futures pricing," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(4), pages 403-432, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Markus Hess, 2019. "An Arithmetic Pure-Jump Multi-Curve Interest Rate Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-30, December.
    2. Hess, Markus, 2017. "Modeling positive electricity prices with arithmetic jump-diffusions," Energy Economics, Elsevier, vol. 67(C), pages 496-507.
    3. Markus Hess, 2021. "A new approach to wind power futures pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1235-1252, December.
    4. Markus Hess, 2020. "Pricing electricity forwards under future information on the stochastic mean-reversion level," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 751-767, December.
    5. Markus Hess, 2018. "Pricing Temperature Derivatives Under Weather Forecasts," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(05), pages 1-34, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fred Espen Benth & Jūratė Šaltytė Benth, 2012. "Modeling and Pricing in Financial Markets for Weather Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8457, December.
    2. Tong, Zhigang & Liu, Allen, 2021. "A censored Ornstein–Uhlenbeck process for rainfall modeling and derivatives pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    3. Nelson Christopher Dzupire & Philip Ngare & Leo Odongo, 2019. "Pricing Basket Weather Derivatives on Rainfall and Temperature Processes," IJFS, MDPI, vol. 7(3), pages 1-14, June.
    4. Markus Hess, 2018. "Pricing Temperature Derivatives Under Weather Forecasts," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(05), pages 1-34, August.
    5. Gülpınar, Nalân & Çanakoḡlu, Ethem, 2017. "Robust portfolio selection problem under temperature uncertainty," European Journal of Operational Research, Elsevier, vol. 256(2), pages 500-523.
    6. Rui Zhou & Johnny Siu-Hang Li & Jeffrey Pai, 2019. "Pricing temperature derivatives with a filtered historical simulation approach," The European Journal of Finance, Taylor & Francis Journals, vol. 25(15), pages 1462-1484, October.
    7. Samuel Asante Gyamerah & Philip Ngare & Dennis Ikpe, 2018. "Regime-Switching Temperature Dynamics Model for Weather Derivatives," International Journal of Stochastic Analysis, Hindawi, vol. 2018, pages 1-15, July.
    8. Dupuis, Debbie J., 2011. "Forecasting temperature to price CME temperature derivatives," International Journal of Forecasting, Elsevier, vol. 27(2), pages 602-618.
    9. Dorfleitner, Gregor & Wimmer, Maximilian, 2010. "The pricing of temperature futures at the Chicago Mercantile Exchange," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1360-1370, June.
    10. Július Bemš & Caner Aydin, 2022. "Introduction to weather derivatives," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(3), May.
    11. Cui, Hairong & Zhou, Ying & Dzandu, Michael D. & Tang, Yinshan & Lu, Xunfa, 2019. "Is temperature-index derivative suitable for China?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    12. Härdle, Wolfgang Karl & Osipenko, Maria, 2017. "Dynamic valuation of weather derivatives under default risk," SFB 649 Discussion Papers 2017-005, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    13. López Cabrera, Brenda & Odening, Martin & Ritter, Matthias, 2013. "Pricing rainfall derivatives at the CME," SFB 649 Discussion Papers 2013-005, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    14. Romain Biard & Christophette Blanchet-Scalliet & Anne Eyraud-Loisel & Stéphane Loisel, 2013. "Impact of Climate Change on Heat Wave Risk," Risks, MDPI, vol. 1(3), pages 1-16, December.
    15. Benth, Fred Espen & Saltyte Benth, Jurate, 2009. "Dynamic pricing of wind futures," Energy Economics, Elsevier, vol. 31(1), pages 16-24, January.
    16. repec:hum:wpaper:sfb649dp2017-005 is not listed on IDEAS
    17. Alexandridis, Antonis K. & Kampouridis, Michael & Cramer, Sam, 2017. "A comparison of wavelet networks and genetic programming in the context of temperature derivatives," International Journal of Forecasting, Elsevier, vol. 33(1), pages 21-47.
    18. Lunina, Veronika, 2016. "Joint Modelling of Power Price, Temperature, and Hydrological Balance with a View towards Scenario Analysis," Working Papers 2016:30, Lund University, Department of Economics.
    19. Dupuis, Debbie J., 2011. "Forecasting temperature to price CME temperature derivatives," International Journal of Forecasting, Elsevier, vol. 27(2), pages 602-618, April.
    20. A. Zapranis & A. Alexandridis, 2008. "Modelling the Temperature Time-dependent Speed of Mean Reversion in the Context of Weather Derivatives Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(4), pages 355-386.
    21. Eirini Konstantinidi & Gkaren Papazian & George Skiadopoulos, 2015. "Modeling the Dynamics of Temperature with a View to Weather Derivatives," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 17, pages 511-544, World Scientific Publishing Co. Pte. Ltd..

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:19:y:2016:i:07:n:s0219024916500515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.