IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i14p3578-d383220.html
   My bibliography  Save this article

Modeling and Managing Joint Price and Volumetric Risk for Volatile Electricity Portfolios

Author

Listed:
  • Johannes Kaufmann

    (Next Kraftwerke GmbH, 50825 Cologne, Germany
    These authors contributed equally to this work.)

  • Philipp Artur Kienscherf

    (Faculty of Management, Economics and Social Sciences, University of Cologne, 50923 Cologne, Germany
    Institute of Energy Economics, University of Cologne, 50827 Cologne, Germany
    These authors contributed equally to this work.)

  • Wolfgang Ketter

    (Faculty of Management, Economics and Social Sciences, University of Cologne, 50923 Cologne, Germany
    Institute of Energy Economics, University of Cologne, 50827 Cologne, Germany)

Abstract

With an increasing share of renewable energy resources participating in electricity markets, there is a growing dependence between renewable power production and clearing prices of spot markets. Modeling this dependence using bivariate analysis can result in underestimation of market risks and adverse effects for stakeholders’ risk management. To enable an undistorted risk assessment, we are using a copula approach to precisely and jointly model electricity prices and infeed volumes of wind power. We simulate the case of wind farm operators using power purchase agreements (PPAs) to shift the price risk to an energy trader, who integrates the infeed into its portfolio. The trader’s portfolio can either be geographically dispersed, or highly localized. Based on its portfolio, the energy trader can decide to use derivatives such as futures to manage its risk exposure. The trader decides on future volumes subject to its portfolio’s inherent volatility. With a given risk averse strategy, a sufficiently diverse portfolio can help reduce the necessity to trade futures and subsequently the disadvantage of having to pay potential risk premiums.

Suggested Citation

  • Johannes Kaufmann & Philipp Artur Kienscherf & Wolfgang Ketter, 2020. "Modeling and Managing Joint Price and Volumetric Risk for Volatile Electricity Portfolios," Energies, MDPI, vol. 13(14), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3578-:d:383220
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/14/3578/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/14/3578/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Markus Burger & Bernhard Klar & Alfred Muller & Gero Schindlmayr, 2004. "A spot market model for pricing derivatives in electricity markets," Quantitative Finance, Taylor & Francis Journals, vol. 4(1), pages 109-122.
    2. Martin Bichler & Alok Gupta & Wolfgang Ketter, 2010. "Research Commentary ---Designing Smart Markets," Information Systems Research, INFORMS, vol. 21(4), pages 688-699, December.
    3. Wolfgang Ketter & John Collins & Maria Gini & Alok Gupta & Paul Schrater, 2012. "Real-Time Tactical and Strategic Sales Management for Intelligent Agents Guided by Economic Regimes," Information Systems Research, INFORMS, vol. 23(4), pages 1263-1283, December.
    4. Thilo Meyer-Brandis & Peter Tankov, 2008. "Multi-Factor Jump-Diffusion Models Of Electricity Prices," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(05), pages 503-528.
    5. Hain, Martin & Schermeyer, Hans & Uhrig-Homburg, Marliese & Fichtner, Wolf, 2018. "Managing renewable energy production risk," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 1-19.
    6. Elberg, Christina & Hagspiel, Simeon, 2015. "Spatial dependencies of wind power and interrelations with spot price dynamics," European Journal of Operational Research, Elsevier, vol. 241(1), pages 260-272.
    7. Mayer, Klaus & Trück, Stefan, 2018. "Electricity markets around the world," Journal of Commodity Markets, Elsevier, vol. 9(C), pages 77-100.
    8. Ketterer, Janina C., 2014. "The impact of wind power generation on the electricity price in Germany," Energy Economics, Elsevier, vol. 44(C), pages 270-280.
    9. Pircalabu, A. & Hvolby, T. & Jung, J. & Høg, E., 2017. "Joint price and volumetric risk in wind power trading: A copula approach," Energy Economics, Elsevier, vol. 62(C), pages 139-154.
    10. Anca Pircalabu & Jesper Jung, 2017. "A mixed C-vine copula model for hedging price and volumetric risk in wind power trading," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1583-1600, October.
    11. Ketter, W. & Peters, M. & Collins, J. & Gupta, A., 2015. "Competitive Benchmarking: An IS Research Approach to Address Wicked Problems with Big Data and Analytics," ERIM Report Series Research in Management ERS-2015-015-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    12. Yumi Oum & Shmuel Oren & Shijie Deng, 2006. "Hedging quantity risks with standard power options in a competitive wholesale electricity market," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(7), pages 697-712, October.
    13. Coulon, Michael & Powell, Warren B. & Sircar, Ronnie, 2013. "A model for hedging load and price risk in the Texas electricity market," Energy Economics, Elsevier, vol. 40(C), pages 976-988.
    14. Yumi Oum & Shmuel S. Oren, 2010. "Optimal Static Hedging of Volumetric Risk in a Competitive Wholesale Electricity Market," Decision Analysis, INFORMS, vol. 7(1), pages 107-122, March.
    15. Woo, C.K. & Horowitz, I. & Moore, J. & Pacheco, A., 2011. "The impact of wind generation on the electricity spot-market price level and variance: The Texas experience," Energy Policy, Elsevier, vol. 39(7), pages 3939-3944, July.
    16. Juan C. Reboredo & Andrea Ugolini & Yifei Chen, 2019. "Interdependence Between Renewable-Energy and Low-Carbon Stock Prices," Energies, MDPI, vol. 12(23), pages 1-14, November.
    17. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    18. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    19. Fred Espen Benth & Jūratė Šaltytė Benth, 2012. "Modeling and Pricing in Financial Markets for Weather Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8457, December.
    20. Ronald I. McKinnon, 1967. "Futures Markets, Buffer Stocks, and Income Stability for Primary Producers," Journal of Political Economy, University of Chicago Press, vol. 75(6), pages 844-844.
    21. Ketter, Wolfgang & Collins, John & Reddy, Prashant, 2013. "Power TAC: A competitive economic simulation of the smart grid," Energy Economics, Elsevier, vol. 39(C), pages 262-270.
    22. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    23. Manner, Hans & Alavi Fard, Farzad & Pourkhanali, Armin & Tafakori, Laleh, 2019. "Forecasting the joint distribution of Australian electricity prices using dynamic vine copulae," Energy Economics, Elsevier, vol. 78(C), pages 143-164.
    24. Janczura, Joanna & Trück, Stefan & Weron, Rafał & Wolff, Rodney C., 2013. "Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling," Energy Economics, Elsevier, vol. 38(C), pages 96-110.
    25. Kolos, Sergey P. & Ronn, Ehud I., 2008. "Estimating the commodity market price of risk for energy prices," Energy Economics, Elsevier, vol. 30(2), pages 621-641, March.
    26. Hans Manner & Olga Reznikova, 2012. "A Survey on Time-Varying Copulas: Specification, Simulations, and Application," Econometric Reviews, Taylor & Francis Journals, vol. 31(6), pages 654-687, November.
    27. Fred Espen Benth & Paul Kettler, 2010. "Dynamic copula models for the spark spread," Quantitative Finance, Taylor & Francis Journals, vol. 11(3), pages 407-421.
    28. Xiaolu Chen & Ji Han & Tingting Zheng & Ping Zhang & Simo Duan & Shihong Miao, 2019. "A Vine-Copula Based Voltage State Assessment with Wind Power Integration," Energies, MDPI, vol. 12(10), pages 1-21, May.
    29. Fred Espen Benth & Jūratė Šaltytė Benth, 2012. "Financial markets for weather," World Scientific Book Chapters, in: Modeling and Pricing in Financial Markets for Weather Derivatives, chapter 1, pages 1-13, World Scientific Publishing Co. Pte. Ltd..
    30. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    31. Kun Li & Joseph D. Cursio & Yunchuan Sun, 2018. "Principal Component Analysis of Price Fluctuation in the Smart Grid Electricity Market," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    32. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Science and Technology, number hsbook0601, December.
    33. Rintamäki, Tuomas & Siddiqui, Afzal S. & Salo, Ahti, 2017. "Does renewable energy generation decrease the volatility of electricity prices? An analysis of Denmark and Germany," Energy Economics, Elsevier, vol. 62(C), pages 270-282.
    34. Li, Kun & Cursio, Joseph D. & Jiang, Mengfei & Liang, Xi, 2019. "The significance of calendar effects in the electricity market," Applied Energy, Elsevier, vol. 235(C), pages 487-494.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuji Yamada & Takuji Matsumoto, 2023. "Construction of Mixed Derivatives Strategy for Wind Power Producers," Energies, MDPI, vol. 16(9), pages 1-26, April.
    2. Talat S. Genc & Stephen Kosempel, 2023. "Energy Transition and the Economy: A Review Article," Energies, MDPI, vol. 16(7), pages 1-26, March.
    3. Giovanni Masala & Marco Micocci & Andrea Rizk, 2022. "Hedging Wind Power Risk Exposure through Weather Derivatives," Energies, MDPI, vol. 15(4), pages 1-30, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pircalabu, A. & Hvolby, T. & Jung, J. & Høg, E., 2017. "Joint price and volumetric risk in wind power trading: A copula approach," Energy Economics, Elsevier, vol. 62(C), pages 139-154.
    2. Tranberg, Bo & Hansen, Rasmus Thrane & Catania, Leopoldo, 2020. "Managing volumetric risk of long-term power purchase agreements," Energy Economics, Elsevier, vol. 85(C).
    3. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
    4. Christensen, Troels Sønderby & Pircalabu, Anca & Høg, Esben, 2019. "A seasonal copula mixture for hedging the clean spark spread with wind power futures," Energy Economics, Elsevier, vol. 78(C), pages 64-80.
    5. Russo, Marianna & Bertsch, Valentin, 2020. "A looming revolution: Implications of self-generation for the risk exposure of retailers," Energy Economics, Elsevier, vol. 92(C).
    6. Macedo, Daniela Pereira & Marques, António Cardoso & Damette, Olivier, 2020. "The impact of the integration of renewable energy sources in the electricity price formation: is the Merit-Order Effect occurring in Portugal?," Utilities Policy, Elsevier, vol. 66(C).
    7. Hain, Martin & Schermeyer, Hans & Uhrig-Homburg, Marliese & Fichtner, Wolf, 2017. "An Electricity Price Modeling Framework for Renewable-Dominant Markets," Working Paper Series in Production and Energy 23, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    8. Russo, Marianna & Kraft, Emil & Bertsch, Valentin & Keles, Dogan, 2022. "Short-term risk management of electricity retailers under rising shares of decentralized solar generation," Energy Economics, Elsevier, vol. 109(C).
    9. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    10. Godin, Frédéric & Ibrahim, Zinatu, 2021. "An analysis of electricity congestion price patterns in North America," Energy Economics, Elsevier, vol. 102(C).
    11. Hosius, Emil & Seebaß, Johann V. & Wacker, Benjamin & Schlüter, Jan Chr., 2023. "The impact of offshore wind energy on Northern European wholesale electricity prices," Applied Energy, Elsevier, vol. 341(C).
    12. Pircalabu, A. & Benth, F.E., 2017. "A regime-switching copula approach to modeling day-ahead prices in coupled electricity markets," Energy Economics, Elsevier, vol. 68(C), pages 283-302.
    13. Woo, C.K. & Moore, J. & Schneiderman, B. & Ho, T. & Olson, A. & Alagappan, L. & Chawla, K. & Toyama, N. & Zarnikau, J., 2016. "Merit-order effects of renewable energy and price divergence in California’s day-ahead and real-time electricity markets," Energy Policy, Elsevier, vol. 92(C), pages 299-312.
    14. Fred Espen Benth & Jūratė Šaltytė Benth & Steen Koekebakker, 2008. "Stochastic Modeling of Electricity and Related Markets," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6811, December.
    15. Hain, Martin & Kargus, Tobias & Schermeyer, Hans & Uhrig-Homburg, Marliese & Fichtner, Wolf, 2022. "An electricity price modeling framework for renewable-dominant markets," Working Paper Series in Production and Energy 66, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    16. Gianfreda, Angelica & Ravazzolo, Francesco & Rossini, Luca, 2020. "Comparing the forecasting performances of linear models for electricity prices with high RES penetration," International Journal of Forecasting, Elsevier, vol. 36(3), pages 974-986.
    17. Woo, C.K. & Chen, Y. & Olson, A. & Moore, J. & Schlag, N. & Ong, A. & Ho, T., 2017. "Electricity price behavior and carbon trading: New evidence from California," Applied Energy, Elsevier, vol. 204(C), pages 531-543.
    18. Füss, Roland & Mahringer, Steffen & Prokopczuk, Marcel, 2015. "Electricity derivatives pricing with forward-looking information," Journal of Economic Dynamics and Control, Elsevier, vol. 58(C), pages 34-57.
    19. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    20. Pape, Christian & Hagemann, Simon & Weber, Christoph, 2016. "Are fundamentals enough? Explaining price variations in the German day-ahead and intraday power market," Energy Economics, Elsevier, vol. 54(C), pages 376-387.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3578-:d:383220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.