IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v84y2023i2d10.1007_s10589-022-00433-4.html
   My bibliography  Save this article

A two-level distributed algorithm for nonconvex constrained optimization

Author

Listed:
  • Kaizhao Sun

    (Georgia Institute of Technology)

  • X. Andy Sun

    (Massachusetts Institute of Technology)

Abstract

This paper aims to develop distributed algorithms for nonconvex optimization problems with complicated constraints associated with a network. The network can be a physical one, such as an electric power network, where the constraints are nonlinear power flow equations, or an abstract one that represents constraint couplings between decision variables of different agents. Despite the recent development of distributed algorithms for nonconvex programs, highly complicated constraints still pose a significant challenge in theory and practice. We first identify some difficulties with the existing algorithms based on the alternating direction method of multipliers (ADMM) for dealing with such problems. We then propose a reformulation that enables us to design a two-level algorithm, which embeds a specially structured three-block ADMM at the inner level in an augmented Lagrangian method framework. Furthermore, we prove the global and local convergence as well as iteration complexity of this new scheme for general nonconvex constrained programs, and show that our analysis can be extended to handle more complicated multi-block inner-level problems. Finally, we demonstrate with computation that the new scheme provides convergent and parallelizable algorithms for various nonconvex applications, and is able to complement the performance of the state-of-the-art distributed algorithms in practice by achieving either faster convergence in optimality gap or in feasibility or both.

Suggested Citation

  • Kaizhao Sun & X. Andy Sun, 2023. "A two-level distributed algorithm for nonconvex constrained optimization," Computational Optimization and Applications, Springer, vol. 84(2), pages 609-649, March.
  • Handle: RePEc:spr:coopap:v:84:y:2023:i:2:d:10.1007_s10589-022-00433-4
    DOI: 10.1007/s10589-022-00433-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-022-00433-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-022-00433-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Min Li & Defeng Sun & Kim-Chuan Toh, 2015. "A Convergent 3-Block Semi-Proximal ADMM for Convex Minimization Problems with One Strongly Convex Block," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 32(04), pages 1-19.
    2. D’Ambrosio, Claudia & Lodi, Andrea & Wiese, Sven & Bragalli, Cristiana, 2015. "Mathematical programming techniques in water network optimization," European Journal of Operational Research, Elsevier, vol. 243(3), pages 774-788.
    3. Caihua Chen & Yuan Shen & Yanfei You, 2013. "On the Convergence Analysis of the Alternating Direction Method of Multipliers with Three Blocks," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-7, October.
    4. Deren Han & Xiaoming Yuan, 2012. "A Note on the Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 227-238, October.
    5. Zaiwen Wen & Xianhua Peng & Xin Liu & Xiaoling Sun & Xiaodi Bai, 2013. "Asset Allocation under the Basel Accord Risk Measures," Papers 1308.1321, arXiv.org.
    6. Burak Kocuk & Santanu S. Dey & X. Andy Sun, 2016. "Strong SOCP Relaxations for the Optimal Power Flow Problem," Operations Research, INFORMS, vol. 64(6), pages 1177-1196, December.
    7. Bo Jiang & Tianyi Lin & Shiqian Ma & Shuzhong Zhang, 2019. "Structured nonconvex and nonsmooth optimization: algorithms and iteration complexity analysis," Computational Optimization and Applications, Springer, vol. 72(1), pages 115-157, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anthony Chukwuemeka Nwachukwu & Andrzej Karbowski, 2024. "Solution of the Simultaneous Routing and Bandwidth Allocation Problem in Energy-Aware Networks Using Augmented Lagrangian-Based Algorithms and Decomposition," Energies, MDPI, vol. 17(5), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maryam Yashtini, 2021. "Multi-block Nonconvex Nonsmooth Proximal ADMM: Convergence and Rates Under Kurdyka–Łojasiewicz Property," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 966-998, September.
    2. William W. Hager & Hongchao Zhang, 2020. "Convergence rates for an inexact ADMM applied to separable convex optimization," Computational Optimization and Applications, Springer, vol. 77(3), pages 729-754, December.
    3. William W. Hager & Hongchao Zhang, 2019. "Inexact alternating direction methods of multipliers for separable convex optimization," Computational Optimization and Applications, Springer, vol. 73(1), pages 201-235, May.
    4. Ruoyu Sun & Zhi-Quan Luo & Yinyu Ye, 2020. "On the Efficiency of Random Permutation for ADMM and Coordinate Descent," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 233-271, February.
    5. Yaning Jiang & Deren Han & Xingju Cai, 2022. "An efficient partial parallel method with scaling step size strategy for three-block convex optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(3), pages 383-419, December.
    6. Puya Latafat & Panagiotis Patrinos, 2017. "Asymmetric forward–backward–adjoint splitting for solving monotone inclusions involving three operators," Computational Optimization and Applications, Springer, vol. 68(1), pages 57-93, September.
    7. Yangyang Xu, 2019. "Asynchronous parallel primal–dual block coordinate update methods for affinely constrained convex programs," Computational Optimization and Applications, Springer, vol. 72(1), pages 87-113, January.
    8. Maryam Yashtini, 2022. "Convergence and rate analysis of a proximal linearized ADMM for nonconvex nonsmooth optimization," Journal of Global Optimization, Springer, vol. 84(4), pages 913-939, December.
    9. Kevin-Martin Aigner & Robert Burlacu & Frauke Liers & Alexander Martin, 2023. "Solving AC Optimal Power Flow with Discrete Decisions to Global Optimality," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 458-474, March.
    10. Savelli, Iacopo & Morstyn, Thomas, 2021. "Electricity prices and tariffs to keep everyone happy: A framework for fixed and nodal prices coexistence in distribution grids with optimal tariffs for investment cost recovery," Omega, Elsevier, vol. 103(C).
    11. Peixuan Li & Yuan Shen & Suhong Jiang & Zehua Liu & Caihua Chen, 2021. "Convergence study on strictly contractive Peaceman–Rachford splitting method for nonseparable convex minimization models with quadratic coupling terms," Computational Optimization and Applications, Springer, vol. 78(1), pages 87-124, January.
    12. Le Cadre, Hélène & Mezghani, Ilyès & Papavasiliou, Anthony, 2019. "A game-theoretic analysis of transmission-distribution system operator coordination," European Journal of Operational Research, Elsevier, vol. 274(1), pages 317-339.
    13. Yao, Yu & Zhu, Xiaoning & Dong, Hongyu & Wu, Shengnan & Wu, Hailong & Carol Tong, Lu & Zhou, Xuesong, 2019. "ADMM-based problem decomposition scheme for vehicle routing problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 156-174.
    14. Anubhav Ratha & Pierre Pinson & Hélène Le Cadre & Ana Virag & Jalal Kazempour, 2022. "Moving from Linear to Conic Markets for Electricity," Working Papers hal-03799767, HAL.
    15. Haoxiang Yang & David P. Morton & Chaithanya Bandi & Krishnamurthy Dvijotham, 2021. "Robust Optimization for Electricity Generation," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 336-351, January.
    16. Jay, Devika & Swarup, K.S., 2021. "A comprehensive survey on reactive power ancillary service markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    17. Liusheng Hou & Hongjin He & Junfeng Yang, 2016. "A partially parallel splitting method for multiple-block separable convex programming with applications to robust PCA," Computational Optimization and Applications, Springer, vol. 63(1), pages 273-303, January.
    18. Subramanian, Vignesh & Feijoo, Felipe & Sankaranarayanan, Sriram & Melendez, Kevin & Das, Tapas K., 2022. "A bilevel conic optimization model for routing and charging of EV fleets serving long distance delivery networks," Energy, Elsevier, vol. 251(C).
    19. Bingsheng He & Min Tao & Xiaoming Yuan, 2017. "Convergence Rate Analysis for the Alternating Direction Method of Multipliers with a Substitution Procedure for Separable Convex Programming," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 662-691, August.
    20. Wogrin, S. & Tejada-Arango, D. & Delikaraoglou, S. & Botterud, A., 2020. "Assessing the impact of inertia and reactive power constraints in generation expansion planning," Applied Energy, Elsevier, vol. 280(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:84:y:2023:i:2:d:10.1007_s10589-022-00433-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.