IDEAS home Printed from https://ideas.repec.org/a/inm/ormoor/v45y2020i1p233-271.html
   My bibliography  Save this article

On the Efficiency of Random Permutation for ADMM and Coordinate Descent

Author

Listed:
  • Ruoyu Sun

    (Department of Industrial and Enterprise Systems Engineering and Coordinated Science Laboratory, University of Illinois Urbana–Champaign, Champaign, Illinois 61801;)

  • Zhi-Quan Luo

    (Chinese University of Hong Kong, 518172 Shenzhen, China; Shenzhen Research Institute of Big Data, 518172 Shenzhen, China;)

  • Yinyu Ye

    (Department of Management Science and Engineering, Stanford University, Palo Alto, California 94305)

Abstract

Random permutation is observed to be powerful for optimization algorithms: for multiblock ADMM (alternating direction method of multipliers), whereas the classical cyclic version diverges, the randomly permuted version converges in practice; for BCD (block coordinate descent), the randomly permuted version is typically faster than other versions. In this paper we provide strong theoretical evidence that random permutation has positive effects on ADMM and BCD, by analyzing randomly permuted ADMM (RP-ADMM) for solving linear systems of equations, and randomly permuted BCD (RP-BCD) for solving unconstrained quadratic problems. First, we prove that RP-ADMM converges in expectation for solving systems of linear equations. The key technical result is that the spectrum of the expected update matrix of RP-BCD lies in (−1/3, 1), instead of the typical range (−1, 1). Second, we establish expected convergence rates of RP-ADMM for solving linear systems and RP-BCD for solving unconstrained quadratic problems. This expected rate of RP-BCD is O ( n ) times better than the worst-case rate of cyclic BCD, thus establishing a gap of at least O ( n ) between RP-BCD and cyclic BCD. To analyze RP-BCD, we propose a conjecture of a new matrix algebraic mean-geometric mean inequality and prove a weaker version of it.

Suggested Citation

  • Ruoyu Sun & Zhi-Quan Luo & Yinyu Ye, 2020. "On the Efficiency of Random Permutation for ADMM and Coordinate Descent," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 233-271, February.
  • Handle: RePEc:inm:ormoor:v:45:y:2020:i:1:p:233-271
    DOI: 10.1287/moor.2019.0990
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/moor.2019.0990
    Download Restriction: no

    File URL: https://libkey.io/10.1287/moor.2019.0990?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Min Li & Defeng Sun & Kim-Chuan Toh, 2015. "A Convergent 3-Block Semi-Proximal ADMM for Convex Minimization Problems with One Strongly Convex Block," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 32(04), pages 1-19.
    2. P. Tseng, 2001. "Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization," Journal of Optimization Theory and Applications, Springer, vol. 109(3), pages 475-494, June.
    3. Bingsheng He & Min Tao & Xiaoming Yuan, 2017. "Convergence Rate Analysis for the Alternating Direction Method of Multipliers with a Substitution Procedure for Separable Convex Programming," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 662-691, August.
    4. D. Leventhal & A. S. Lewis, 2010. "Randomized Methods for Linear Constraints: Convergence Rates and Conditioning," Mathematics of Operations Research, INFORMS, vol. 35(3), pages 641-654, August.
    5. Caihua Chen & Yuan Shen & Yanfei You, 2013. "On the Convergence Analysis of the Alternating Direction Method of Multipliers with Three Blocks," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-7, October.
    6. Deren Han & Xiaoming Yuan, 2012. "A Note on the Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 227-238, October.
    7. NESTEROV, Yurii, 2012. "Efficiency of coordinate descent methods on huge-scale optimization problems," LIDAM Reprints CORE 2511, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Merrick, James H. & Bistline, John E.T. & Blanford, Geoffrey J., 2024. "On representation of energy storage in electricity planning models," Energy Economics, Elsevier, vol. 136(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yangyang Xu, 2019. "Asynchronous parallel primal–dual block coordinate update methods for affinely constrained convex programs," Computational Optimization and Applications, Springer, vol. 72(1), pages 87-113, January.
    2. Yaning Jiang & Deren Han & Xingju Cai, 2022. "An efficient partial parallel method with scaling step size strategy for three-block convex optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(3), pages 383-419, December.
    3. William W. Hager & Hongchao Zhang, 2020. "Convergence rates for an inexact ADMM applied to separable convex optimization," Computational Optimization and Applications, Springer, vol. 77(3), pages 729-754, December.
    4. William W. Hager & Hongchao Zhang, 2019. "Inexact alternating direction methods of multipliers for separable convex optimization," Computational Optimization and Applications, Springer, vol. 73(1), pages 201-235, May.
    5. Kaizhao Sun & X. Andy Sun, 2023. "A two-level distributed algorithm for nonconvex constrained optimization," Computational Optimization and Applications, Springer, vol. 84(2), pages 609-649, March.
    6. Puya Latafat & Panagiotis Patrinos, 2017. "Asymmetric forward–backward–adjoint splitting for solving monotone inclusions involving three operators," Computational Optimization and Applications, Springer, vol. 68(1), pages 57-93, September.
    7. Peixuan Li & Yuan Shen & Suhong Jiang & Zehua Liu & Caihua Chen, 2021. "Convergence study on strictly contractive Peaceman–Rachford splitting method for nonseparable convex minimization models with quadratic coupling terms," Computational Optimization and Applications, Springer, vol. 78(1), pages 87-124, January.
    8. David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.
    9. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 234-258, July.
    10. Qin Wang & Weiguo Li & Wendi Bao & Feiyu Zhang, 2022. "Accelerated Randomized Coordinate Descent for Solving Linear Systems," Mathematics, MDPI, vol. 10(22), pages 1-20, November.
    11. Ron Shefi & Marc Teboulle, 2016. "On the rate of convergence of the proximal alternating linearized minimization algorithm for convex problems," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(1), pages 27-46, February.
    12. Zhigang Li & Mingchuan Zhang & Junlong Zhu & Ruijuan Zheng & Qikun Zhang & Qingtao Wu, 2018. "Stochastic Block-Coordinate Gradient Projection Algorithms for Submodular Maximization," Complexity, Hindawi, vol. 2018, pages 1-11, December.
    13. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "Multi-block Bregman proximal alternating linearized minimization and its application to orthogonal nonnegative matrix factorization," Computational Optimization and Applications, Springer, vol. 79(3), pages 681-715, July.
    14. Yen, Yu-Min & Yen, Tso-Jung, 2014. "Solving norm constrained portfolio optimization via coordinate-wise descent algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 737-759.
    15. Yangyang Xu & Shuzhong Zhang, 2018. "Accelerated primal–dual proximal block coordinate updating methods for constrained convex optimization," Computational Optimization and Applications, Springer, vol. 70(1), pages 91-128, May.
    16. Jinlong Lei & Uday V. Shanbhag, 2020. "Asynchronous Schemes for Stochastic and Misspecified Potential Games and Nonconvex Optimization," Operations Research, INFORMS, vol. 68(6), pages 1742-1766, November.
    17. Sarah Perrin & Thierry Roncalli, 2019. "Machine Learning Optimization Algorithms & Portfolio Allocation," Papers 1909.10233, arXiv.org.
    18. Mingyi Hong & Tsung-Hui Chang & Xiangfeng Wang & Meisam Razaviyayn & Shiqian Ma & Zhi-Quan Luo, 2020. "A Block Successive Upper-Bound Minimization Method of Multipliers for Linearly Constrained Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 833-861, August.
    19. Nicolas Loizou & Peter Richtárik, 2020. "Momentum and stochastic momentum for stochastic gradient, Newton, proximal point and subspace descent methods," Computational Optimization and Applications, Springer, vol. 77(3), pages 653-710, December.
    20. Du, Kui, 2024. "Regularized randomized iterative algorithms for factorized linear systems," Applied Mathematics and Computation, Elsevier, vol. 466(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormoor:v:45:y:2020:i:1:p:233-271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.