IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v243y2015i3p774-788.html
   My bibliography  Save this article

Mathematical programming techniques in water network optimization

Author

Listed:
  • D’Ambrosio, Claudia
  • Lodi, Andrea
  • Wiese, Sven
  • Bragalli, Cristiana

Abstract

In this article we survey mathematical programming approaches to problems in the field of drinking water distribution network optimization. Among the predominant topics treated in the literature, we focus on two different, but related problem classes. One can be described by the notion of network design, while the other is more aptly termed by network operation. The basic underlying model in both cases is a nonlinear network flow model, and we give an overview on the more specific modeling aspects in each case. The overall mathematical model is a Mixed Integer Nonlinear Program having a common structure with respect to how water dynamics in pipes are described. Finally, we survey the algorithmic approaches to solve the proposed problems and we discuss computation on various types of water networks.

Suggested Citation

  • D’Ambrosio, Claudia & Lodi, Andrea & Wiese, Sven & Bragalli, Cristiana, 2015. "Mathematical programming techniques in water network optimization," European Journal of Operational Research, Elsevier, vol. 243(3), pages 774-788.
  • Handle: RePEc:eee:ejores:v:243:y:2015:i:3:p:774-788
    DOI: 10.1016/j.ejor.2014.12.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714010571
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.12.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghaddar, Bissan & Naoum-Sawaya, Joe & Kishimoto, Akihiro & Taheri, Nicole & Eck, Bradley, 2015. "A Lagrangian decomposition approach for the pump scheduling problem in water networks," European Journal of Operational Research, Elsevier, vol. 241(2), pages 490-501.
    2. da Conceicao Cunha, Maria & Ribeiro, Luisa, 2004. "Tabu search algorithms for water network optimization," European Journal of Operational Research, Elsevier, vol. 157(3), pages 746-758, September.
    3. Coelho, B. & Andrade-Campos, A., 2014. "Efficiency achievement in water supply systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 59-84.
    4. M. Collins & L. Cooper & R. Helgason & J. Kennington & L. LeBlanc, 1978. "Solving the Pipe Network Analysis Problem Using Optimization Techniques," Management Science, INFORMS, vol. 24(7), pages 747-760, March.
    5. Rovatti, Riccardo & D’Ambrosio, Claudia & Lodi, Andrea & Martello, Silvano, 2014. "Optimistic MILP modeling of non-linear optimization problems," European Journal of Operational Research, Elsevier, vol. 239(1), pages 32-45.
    6. Björn Geißler & Oliver Kolb & Jens Lang & Günter Leugering & Alexander Martin & Antonio Morsi, 2011. "Mixed integer linear models for the optimization of dynamical transport networks," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(3), pages 339-362, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Selek, István & Ikonen, Enso, 2019. "Role of specific energy in decomposition of time-invariant least-cost reservoir filling problem," European Journal of Operational Research, Elsevier, vol. 272(2), pages 565-573.
    2. Bonvin, Gratien & Demassey, Sophie & Le Pape, Claude & Maïzi, Nadia & Mazauric, Vincent & Samperio, Alfredo, 2017. "A convex mathematical program for pump scheduling in a class of branched water networks," Applied Energy, Elsevier, vol. 185(P2), pages 1702-1711.
    3. Shao, Yu & Zhou, Xinhong & Yu, Tingchao & Zhang, Tuqiao & Chu, Shipeng, 2024. "Pump scheduling optimization in water distribution system based on mixed integer linear programming," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1140-1151.
    4. Hypolite, Gautier & Boutin, Olivier & Sole, Sandrine Del & Cloarec, Jean-François & Ferrasse, Jean-Henry, 2023. "Evaluation of a water network’s energy potential in dynamic operation," Energy, Elsevier, vol. 271(C).
    5. DE CORTE, Annelies & SÖRENSEN, Kenneth, 2015. "A lean optimization algorithm for water distribution network design optimization," Working Papers 2015020, University of Antwerp, Faculty of Business and Economics.
    6. Rashidi, Hamidreza & GhaffarianHoseini, Ali & GhaffarianHoseini, Amirhosein & Nik Sulaiman, Nik Meriam & Tookey, John & Hashim, Nur Awanis, 2015. "Application of wastewater treatment in sustainable design of green built environments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 845-856.
    7. Bohong Wang & Yongtu Liang & Wei Zhao & Yun Shen & Meng Yuan & Zhimin Li & Jian Guo, 2021. "A Continuous Pump Location Optimization Method for Water Pipe Network Design," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 447-464, January.
    8. Mengying Xue & Tianhu Deng & Zuo‐Jun Max Shen, 2019. "Optimizing natural gas pipeline transmission with nonuniform elevation: A new initialization approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 547-564, October.
    9. Hong, Sung-Pil & Kim, Taegyoon & Lee, Subin, 2019. "A precision pump schedule optimization for the water supply networks with small buffers," Omega, Elsevier, vol. 82(C), pages 24-37.
    10. Fränk Plein & Johannes Thürauf & Martine Labbé & Martin Schmidt, 2022. "A bilevel optimization approach to decide the feasibility of bookings in the European gas market," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(3), pages 409-449, June.
    11. Xiaoli Feng & Baoyun Qiu & Yongxing Wang, 2020. "Optimizing Parallel Pumping Station Operations in an Open-Channel Water Transfer System Using an Efficient Hybrid Algorithm," Energies, MDPI, vol. 13(18), pages 1-19, September.
    12. Ahmad, Shakeel & Jia, Haifeng & Chen, Zhengxia & Li, Qian & Xu, Changqing, 2020. "Water-energy nexus and energy efficiency: A systematic analysis of urban water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Nikhil Hooda & Om Damani, 2019. "JalTantra: A System for the Design and Optimization of Rural Piped Water Networks," Service Science, INFORMS, vol. 49(6), pages 447-458, November.
    14. Vivek Sharma & M. J. Hossain & S. M. Nawazish Ali & Muhammad Kashif, 2020. "A Photovoltaic-Fed Z-Source Inverter Motor Drive with Fault-Tolerant Capability for Rural Irrigation," Energies, MDPI, vol. 13(18), pages 1-19, September.
    15. Lars Schewe & Martin Schmidt & Johannes Thürauf, 2022. "Global optimization for the multilevel European gas market system with nonlinear flow models on trees," Journal of Global Optimization, Springer, vol. 82(3), pages 627-653, March.
    16. Marins, Fernando A. S. & Senne, Edson L. F. & Darby-Dowman, Ken & Machado, Arlene F. & Perin, Clovis, 1997. "Algorithms for network piecewise-linear programs: A comparative study," European Journal of Operational Research, Elsevier, vol. 97(1), pages 183-199, February.
    17. Pizzolato, Alberto & Sciacovelli, Adriano & Verda, Vittorio, 2019. "Centralized control of district heating networks during failure events using discrete adjoint sensitivities," Energy, Elsevier, vol. 184(C), pages 58-72.
    18. Naoum-Sawaya, Joe & Ghaddar, Bissan & Arandia, Ernesto & Eck, Bradley, 2015. "Simulation-optimization approaches for water pump scheduling and pipe replacement problems," European Journal of Operational Research, Elsevier, vol. 246(1), pages 293-306.
    19. Valeria Puleo & Mariacrocetta Sambito & Gabriele Freni, 2015. "An Environmental Analysis of the Effect of Energy Saving, Production and Recovery Measures on Water Supply Systems under Scarcity Conditions," Energies, MDPI, vol. 8(6), pages 1-15, June.
    20. Steffen Rebennack, 2016. "Computing tight bounds via piecewise linear functions through the example of circle cutting problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(1), pages 3-57, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:243:y:2015:i:3:p:774-788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.