IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v78y2021i1d10.1007_s10589-020-00229-4.html
   My bibliography  Save this article

Convergence study on strictly contractive Peaceman–Rachford splitting method for nonseparable convex minimization models with quadratic coupling terms

Author

Listed:
  • Peixuan Li

    (City University of Hong Kong)

  • Yuan Shen

    (Nanjing University of Finance and Economics)

  • Suhong Jiang

    (Nanjing University of Finance and Economics)

  • Zehua Liu

    (Nanjing University)

  • Caihua Chen

    (Nanjing University)

Abstract

The alternating direction method of multipliers (ADMM) and Peaceman Rachford splitting method (PRSM) are two popular splitting algorithms for solving large-scale separable convex optimization problems. Though problems with nonseparable structure appear frequently in practice, researches on splitting methods for these problems remain to be scarce. Very recently, Chen et al. (Math Program 173(1–2):37–77, 2019) extended the 2-block ADMM to linearly constrained nonseparable models with quadratic coupling terms and established its convergence. However, theoretical researches about nonseparable PRSM or its variants are still lacking. To fill the gap, in this paper we focus on the strictly contractive PRSM (SC-PRSM) applied to 2-block linearly constrained convex minimization problems with quadratic coupling objective functions. Under mild conditions, we prove the convergence of our proposed SC-PRSM and establish its o(1/k) convergence rate. Moreover, we implement the SC-PRSM to solve a problem of calculating the Euclidian distance between two ellipsoids, and compare its performance with three ADMM type algorithms. The results show the nonseparable SC-PRSM outperforms the other three algorithms in terms of both the iteration numbers and CPU time.

Suggested Citation

  • Peixuan Li & Yuan Shen & Suhong Jiang & Zehua Liu & Caihua Chen, 2021. "Convergence study on strictly contractive Peaceman–Rachford splitting method for nonseparable convex minimization models with quadratic coupling terms," Computational Optimization and Applications, Springer, vol. 78(1), pages 87-124, January.
  • Handle: RePEc:spr:coopap:v:78:y:2021:i:1:d:10.1007_s10589-020-00229-4
    DOI: 10.1007/s10589-020-00229-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-020-00229-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-020-00229-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Min Li & Defeng Sun & Kim-Chuan Toh, 2015. "A Convergent 3-Block Semi-Proximal ADMM for Convex Minimization Problems with One Strongly Convex Block," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 32(04), pages 1-19.
    2. Bingsheng He & Min Tao & Xiaoming Yuan, 2017. "Convergence Rate Analysis for the Alternating Direction Method of Multipliers with a Substitution Procedure for Separable Convex Programming," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 662-691, August.
    3. Jianchao Bai & Jicheng Li & Fengmin Xu & Hongchao Zhang, 2018. "Generalized symmetric ADMM for separable convex optimization," Computational Optimization and Applications, Springer, vol. 70(1), pages 129-170, May.
    4. Deren Han & Xiaoming Yuan & Wenxing Zhang & Xingju Cai, 2013. "An ADM-based splitting method for separable convex programming," Computational Optimization and Applications, Springer, vol. 54(2), pages 343-369, March.
    5. Zhongming Wu & Min Li & David Z. W. Wang & Deren Han, 2017. "A Symmetric Alternating Direction Method of Multipliers for Separable Nonconvex Minimization Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(06), pages 1-27, December.
    6. Guoyong Gu & Bingsheng He & Junfeng Yang, 2014. "Inexact Alternating-Direction-Based Contraction Methods for Separable Linearly Constrained Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 163(1), pages 105-129, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaning Jiang & Deren Han & Xingju Cai, 2022. "An efficient partial parallel method with scaling step size strategy for three-block convex optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(3), pages 383-419, December.
    2. Jianchao Bai & William W. Hager & Hongchao Zhang, 2022. "An inexact accelerated stochastic ADMM for separable convex optimization," Computational Optimization and Applications, Springer, vol. 81(2), pages 479-518, March.
    3. Shengjie Xu & Bingsheng He, 2021. "A parallel splitting ALM-based algorithm for separable convex programming," Computational Optimization and Applications, Springer, vol. 80(3), pages 831-851, December.
    4. Ruoyu Sun & Zhi-Quan Luo & Yinyu Ye, 2020. "On the Efficiency of Random Permutation for ADMM and Coordinate Descent," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 233-271, February.
    5. Yangyang Xu, 2019. "Asynchronous parallel primal–dual block coordinate update methods for affinely constrained convex programs," Computational Optimization and Applications, Springer, vol. 72(1), pages 87-113, January.
    6. Zhangquan Wang & Shanshan Huo & Xinlong Xiong & Ke Wang & Banteng Liu, 2023. "A Maximally Split and Adaptive Relaxed Alternating Direction Method of Multipliers for Regularized Extreme Learning Machines," Mathematics, MDPI, vol. 11(14), pages 1-16, July.
    7. Maryam Yashtini, 2022. "Convergence and rate analysis of a proximal linearized ADMM for nonconvex nonsmooth optimization," Journal of Global Optimization, Springer, vol. 84(4), pages 913-939, December.
    8. Jiao-fen Li & Wen Li & Ru Huang, 2016. "An efficient method for solving a matrix least squares problem over a matrix inequality constraint," Computational Optimization and Applications, Springer, vol. 63(2), pages 393-423, March.
    9. Puya Latafat & Panagiotis Patrinos, 2017. "Asymmetric forward–backward–adjoint splitting for solving monotone inclusions involving three operators," Computational Optimization and Applications, Springer, vol. 68(1), pages 57-93, September.
    10. William W. Hager & Hongchao Zhang, 2020. "Convergence rates for an inexact ADMM applied to separable convex optimization," Computational Optimization and Applications, Springer, vol. 77(3), pages 729-754, December.
    11. Jueyou Li & Zhiyou Wu & Changzhi Wu & Qiang Long & Xiangyu Wang, 2016. "An Inexact Dual Fast Gradient-Projection Method for Separable Convex Optimization with Linear Coupled Constraints," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 153-171, January.
    12. Kai Tu & Haibin Zhang & Huan Gao & Junkai Feng, 2020. "A hybrid Bregman alternating direction method of multipliers for the linearly constrained difference-of-convex problems," Journal of Global Optimization, Springer, vol. 76(4), pages 665-693, April.
    13. Wu, Tingting & Ng, Michael K. & Zhao, Xi-Le, 2021. "Sparsity reconstruction using nonconvex TGpV-shearlet regularization and constrained projection," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    14. Jing Zhao & Qiao-Li Dong & Michael Th. Rassias & Fenghui Wang, 2022. "Two-step inertial Bregman alternating minimization algorithm for nonconvex and nonsmooth problems," Journal of Global Optimization, Springer, vol. 84(4), pages 941-966, December.
    15. William W. Hager & Hongchao Zhang, 2019. "Inexact alternating direction methods of multipliers for separable convex optimization," Computational Optimization and Applications, Springer, vol. 73(1), pages 201-235, May.
    16. Eike Börgens & Christian Kanzow, 2019. "Regularized Jacobi-type ADMM-methods for a class of separable convex optimization problems in Hilbert spaces," Computational Optimization and Applications, Springer, vol. 73(3), pages 755-790, July.
    17. Min Li & Zhongming Wu, 2019. "Convergence Analysis of the Generalized Splitting Methods for a Class of Nonconvex Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 183(2), pages 535-565, November.
    18. Yangyang Xu & Shuzhong Zhang, 2018. "Accelerated primal–dual proximal block coordinate updating methods for constrained convex optimization," Computational Optimization and Applications, Springer, vol. 70(1), pages 91-128, May.
    19. Zehui Jia & Xue Gao & Xingju Cai & Deren Han, 2021. "Local Linear Convergence of the Alternating Direction Method of Multipliers for Nonconvex Separable Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 188(1), pages 1-25, January.
    20. Xingju Cai & Deren Han & Xiaoming Yuan, 2017. "On the convergence of the direct extension of ADMM for three-block separable convex minimization models with one strongly convex function," Computational Optimization and Applications, Springer, vol. 66(1), pages 39-73, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:78:y:2021:i:1:d:10.1007_s10589-020-00229-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.