IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v190y2021i3d10.1007_s10957-021-01919-7.html
   My bibliography  Save this article

Multi-block Nonconvex Nonsmooth Proximal ADMM: Convergence and Rates Under Kurdyka–Łojasiewicz Property

Author

Listed:
  • Maryam Yashtini

    (Georgetown University)

Abstract

We study the convergence and convergence rates of a multi-block proximal alternating direction method of multipliers (PADMM) for solving linearly constrained separable nonconvex nonsmooth optimization problems. This algorithm is an important variant of the alternating direction method of multipliers (ADMM) which includes a proximal term in each subproblem, to cancel out complicated terms in applications where subproblems are not easy to solve or do not admit a simple closed form solution. We consider an over-relaxation step size in the dual update and provide a detailed proof of the convergence for any step size $$\beta \in (0,2)$$ β ∈ ( 0 , 2 ) . We prove the convergence of the sequence generated by the PADMM by showing that it has a finite length and it is Cauchy. Under the powerful Kurdyka–Łojasiewicz (KŁ) property, we establish the convergence rates for the values and the iterates, and we show that various values of KŁ-exponent associated with the objective function can raise PADMM with three different convergence rates. More precisely, we show that if the (KŁ) exponent $$\theta =0$$ θ = 0 , the sequence generated by PADMM converges in a finite numbers of iterations. If $$\theta \in (0,1/2]$$ θ ∈ ( 0 , 1 / 2 ] , then the sequential rate of convergence is $$cQ^{k}$$ c Q k where $$c>0$$ c > 0 , $$Q\in (0,1)$$ Q ∈ ( 0 , 1 ) , and $$k\in {\mathbb {N}}$$ k ∈ N is the iteration number. If $$\theta \in (1/2,1]$$ θ ∈ ( 1 / 2 , 1 ] , then $${\mathcal {O}}(1/k^{r})$$ O ( 1 / k r ) rate where $$r=(1-\theta )/(2\theta -1)$$ r = ( 1 - θ ) / ( 2 θ - 1 ) is achieved.

Suggested Citation

  • Maryam Yashtini, 2021. "Multi-block Nonconvex Nonsmooth Proximal ADMM: Convergence and Rates Under Kurdyka–Łojasiewicz Property," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 966-998, September.
  • Handle: RePEc:spr:joptap:v:190:y:2021:i:3:d:10.1007_s10957-021-01919-7
    DOI: 10.1007/s10957-021-01919-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-021-01919-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-021-01919-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hédy Attouch & Jérôme Bolte & Patrick Redont & Antoine Soubeyran, 2010. "Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Łojasiewicz Inequality," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 438-457, May.
    2. Pierre Frankel & Guillaume Garrigos & Juan Peypouquet, 2015. "Splitting Methods with Variable Metric for Kurdyka–Łojasiewicz Functions and General Convergence Rates," Journal of Optimization Theory and Applications, Springer, vol. 165(3), pages 874-900, June.
    3. Caihua Chen & Yuan Shen & Yanfei You, 2013. "On the Convergence Analysis of the Alternating Direction Method of Multipliers with Three Blocks," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-7, October.
    4. Yunmei Chen & William Hager & Maryam Yashtini & Xiaojing Ye & Hongchao Zhang, 2013. "Bregman operator splitting with variable stepsize for total variation image reconstruction," Computational Optimization and Applications, Springer, vol. 54(2), pages 317-342, March.
    5. Deren Han & Xiaoming Yuan, 2012. "A Note on the Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 227-238, October.
    6. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    7. Bo Jiang & Tianyi Lin & Shiqian Ma & Shuzhong Zhang, 2019. "Structured nonconvex and nonsmooth optimization: algorithms and iteration complexity analysis," Computational Optimization and Applications, Springer, vol. 72(1), pages 115-157, January.
    8. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maryam Yashtini, 2022. "Convergence and rate analysis of a proximal linearized ADMM for nonconvex nonsmooth optimization," Journal of Global Optimization, Springer, vol. 84(4), pages 913-939, December.
    2. Tan Nhat Pham & Minh N. Dao & Andrew Eberhard & Nargiz Sultanova, 2024. "Bregman Proximal Linearized ADMM for Minimizing Separable Sums Coupled by a Difference of Functions," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1622-1658, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maryam Yashtini, 2022. "Convergence and rate analysis of a proximal linearized ADMM for nonconvex nonsmooth optimization," Journal of Global Optimization, Springer, vol. 84(4), pages 913-939, December.
    2. William W. Hager & Hongchao Zhang, 2020. "Convergence rates for an inexact ADMM applied to separable convex optimization," Computational Optimization and Applications, Springer, vol. 77(3), pages 729-754, December.
    3. William W. Hager & Hongchao Zhang, 2019. "Inexact alternating direction methods of multipliers for separable convex optimization," Computational Optimization and Applications, Springer, vol. 73(1), pages 201-235, May.
    4. Bian, Fengmiao & Zhang, Xiaoqun, 2021. "A parameterized Douglas–Rachford splitting algorithm for nonconvex optimization," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    5. Peiran Yu & Ting Kei Pong, 2019. "Iteratively reweighted $$\ell _1$$ ℓ 1 algorithms with extrapolation," Computational Optimization and Applications, Springer, vol. 73(2), pages 353-386, June.
    6. Zehui Jia & Xue Gao & Xingju Cai & Deren Han, 2021. "Local Linear Convergence of the Alternating Direction Method of Multipliers for Nonconvex Separable Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 188(1), pages 1-25, January.
    7. Kaizhao Sun & X. Andy Sun, 2023. "A two-level distributed algorithm for nonconvex constrained optimization," Computational Optimization and Applications, Springer, vol. 84(2), pages 609-649, March.
    8. Wenli Huang & Yuchao Tang & Meng Wen & Haiyang Li, 2022. "Relaxed Variable Metric Primal-Dual Fixed-Point Algorithm with Applications," Mathematics, MDPI, vol. 10(22), pages 1-16, November.
    9. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    10. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank.
    11. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    12. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    13. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    14. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    15. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    16. Dmitriy Drusvyatskiy & Adrian S. Lewis, 2018. "Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 919-948, August.
    17. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    18. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    19. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    20. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:190:y:2021:i:3:d:10.1007_s10957-021-01919-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.