IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1308.1321.html
   My bibliography  Save this paper

Asset Allocation under the Basel Accord Risk Measures

Author

Listed:
  • Zaiwen Wen
  • Xianhua Peng
  • Xin Liu
  • Xiaoling Sun
  • Xiaodi Bai

Abstract

Financial institutions are currently required to meet more stringent capital requirements than they were before the recent financial crisis; in particular, the capital requirement for a large bank's trading book under the Basel 2.5 Accord more than doubles that under the Basel II Accord. The significant increase in capital requirements renders it necessary for banks to take into account the constraint of capital requirement when they make asset allocation decisions. In this paper, we propose a new asset allocation model that incorporates the regulatory capital requirements under both the Basel 2.5 Accord, which is currently in effect, and the Basel III Accord, which was recently proposed and is currently under discussion. We propose an unified algorithm based on the alternating direction augmented Lagrangian method to solve the model; we also establish the first-order optimality of the limit points of the sequence generated by the algorithm under some mild conditions. The algorithm is simple and easy to implement; each step of the algorithm consists of solving convex quadratic programming or one-dimensional subproblems. Numerical experiments on simulated and real market data show that the algorithm compares favorably with other existing methods, especially in cases in which the model is non-convex.

Suggested Citation

  • Zaiwen Wen & Xianhua Peng & Xin Liu & Xiaoling Sun & Xiaodi Bai, 2013. "Asset Allocation under the Basel Accord Risk Measures," Papers 1308.1321, arXiv.org.
  • Handle: RePEc:arx:papers:1308.1321
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1308.1321
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    2. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    3. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    4. Chiarawongse, Anant & Kiatsupaibul, Seksan & Tirapat, Sunti & Roy, Benjamin Van, 2012. "Portfolio selection with qualitative input," Journal of Banking & Finance, Elsevier, vol. 36(2), pages 489-496.
    5. Qiang Dai & Kenneth J. Singleton & Wei Yang, 2007. "Regime Shifts in a Dynamic Term Structure Model of U.S. Treasury Bond Yields," The Review of Financial Studies, Society for Financial Studies, vol. 20(5), pages 1669-1706, 2007 12.
    6. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    7. Christopher A. Sims & Tao Zha, 2006. "Were There Regime Switches in U.S. Monetary Policy?," American Economic Review, American Economic Association, vol. 96(1), pages 54-81, March.
    8. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pengyu Qian & Zizhuo Wang & Zaiwen Wen, 2015. "A Composite Risk Measure Framework for Decision Making under Uncertainty," Papers 1501.01126, arXiv.org.
    2. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    3. Steven Kou & Xianhua Peng, 2014. "On the Measurement of Economic Tail Risk," Papers 1401.4787, arXiv.org, revised Aug 2015.
    4. Xueting Cui & Xiaoling Sun & Shushang Zhu & Rujun Jiang & Duan Li, 2018. "Portfolio Optimization with Nonparametric Value at Risk: A Block Coordinate Descent Method," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 454-471, August.
    5. Kaizhao Sun & X. Andy Sun, 2023. "A two-level distributed algorithm for nonconvex constrained optimization," Computational Optimization and Applications, Springer, vol. 84(2), pages 609-649, March.
    6. Yang, Xinfeng & Yan, Xiaodong & Huang, Jian, 2019. "High-dimensional integrative analysis with homogeneity and sparsity recovery," Journal of Multivariate Analysis, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Constantino Hevia & Martín Sola & Ivan Petrella, 2022. "Bond risk premia, priced regime shifts, and macroeconomic fundamentals," Department of Economics Working Papers 2022_03, Universidad Torcuato Di Tella.
    2. Masaru Chiba, 2023. "Robust and efficient specification tests in Markov-switching autoregressive models," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 99-137, April.
    3. Hamidi, Benjamin & Maillet, Bertrand & Prigent, Jean-Luc, 2014. "A dynamic autoregressive expectile for time-invariant portfolio protection strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 46(C), pages 1-29.
    4. Mustafa Akay & Berat Bayram & Abdullah Kazdal & Muhammed Hasan Yilmaz, 2020. "Investigating Regime-Dependent Dynamics in Country Risk Premium: Evidence from Turkey and Emerging Markets," CBT Research Notes in Economics 2008, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    5. Markus Leippold & Nikola Vasiljević, 2020. "Option-Implied Intrahorizon Value at Risk," Management Science, INFORMS, vol. 66(1), pages 397-414, January.
    6. Huang, Jinbo & Ding, Ashley & Li, Yong & Lu, Dong, 2020. "Increasing the risk management effectiveness from higher accuracy: A novel non-parametric method," Pacific-Basin Finance Journal, Elsevier, vol. 62(C).
    7. Walter Farkas & Ludovic Mathys & Nikola Vasiljević, 2021. "Intra‐Horizon expected shortfall and risk structure in models with jumps," Mathematical Finance, Wiley Blackwell, vol. 31(2), pages 772-823, April.
    8. Hiroyuki Kasahara & Katsumi Shimotsu, 2017. "Asymptotic Properties of the Maximum Likelihood Estimator in Regime Switching Econometric Models," CIRJE F-Series CIRJE-F-1049, CIRJE, Faculty of Economics, University of Tokyo.
    9. James D. Hamilton & Tatsuyoshi Okimoto, 2011. "Sources of variation in holding returns for fed funds futures contracts," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(3), pages 205-229, March.
    10. Kasahara, Hiroyuki & Shimotsu, Katsumi, 2019. "Asymptotic properties of the maximum likelihood estimator in regime switching econometric models," Journal of Econometrics, Elsevier, vol. 208(2), pages 442-467.
    11. Andrew Ang & Allan Timmermann, 2012. "Regime Changes and Financial Markets," Annual Review of Financial Economics, Annual Reviews, vol. 4(1), pages 313-337, October.
    12. Francesco Cesarone & Manuel L. Martino & Fabio Tardella, 2023. "Mean-Variance-VaR portfolios: MIQP formulation and performance analysis," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(3), pages 1043-1069, September.
    13. Hamilton, J.D., 2016. "Macroeconomic Regimes and Regime Shifts," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 163-201, Elsevier.
    14. Boyarchenko, Svetlana & Levendorskii, Sergei, 2008. "Exit problems in regime-switching models," Journal of Mathematical Economics, Elsevier, vol. 44(2), pages 180-206, January.
    15. Winter, Peter, 2007. "Managerial Risk Accounting and Control – A German perspective," MPRA Paper 8185, University Library of Munich, Germany.
    16. Barthélemy, Jean & Marx, Magali, 2017. "Solving endogenous regime switching models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 1-25.
    17. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    18. Carlo Acerbi & Dirk Tasche, 2002. "Expected Shortfall: A Natural Coherent Alternative to Value at Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 379-388, July.
    19. Dimitrios G. Konstantinides & Georgios C. Zachos, 2019. "Exhibiting Abnormal Returns Under a Risk Averse Strategy," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 551-566, June.
    20. Qifa Xu & Lu Chen & Cuixia Jiang & Yezheng Liu, 2022. "Forecasting expected shortfall and value at risk with a joint elicitable mixed data sampling model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 407-421, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1308.1321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.