IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v63y2016i1p273-303.html
   My bibliography  Save this article

A partially parallel splitting method for multiple-block separable convex programming with applications to robust PCA

Author

Listed:
  • Liusheng Hou
  • Hongjin He
  • Junfeng Yang

Abstract

We consider a multiple-block separable convex programming problem, where the objective function is the sum of m individual convex functions without overlapping variables, and the constraints are linear, aside from side constraints. Based on the combination of the classical Gauss–Seidel and the Jacobian decompositions of the augmented Lagrangian function, we propose a partially parallel splitting method, which differs from existing augmented Lagrangian based splitting methods in the sense that such an approach simplifies the iterative scheme significantly by removing the potentially expensive correction step. Furthermore, a relaxation step, whose computational cost is negligible, can be incorporated into the proposed method to improve its practical performance. Theoretically, we establish global convergence of the new method in the framework of proximal point algorithm and worst-case nonasymptotic $${\mathcal {O}}(1/t)$$ O ( 1 / t ) convergence rate results in both ergodic and nonergodic senses, where t counts the iteration. The efficiency of the proposed method is further demonstrated through numerical results on robust PCA, i.e., factorizing from incomplete information of an unknown matrix into its low-rank and sparse components, with both synthetic and real data of extracting the background from a corrupted surveillance video. Copyright Springer Science+Business Media New York 2016

Suggested Citation

  • Liusheng Hou & Hongjin He & Junfeng Yang, 2016. "A partially parallel splitting method for multiple-block separable convex programming with applications to robust PCA," Computational Optimization and Applications, Springer, vol. 63(1), pages 273-303, January.
  • Handle: RePEc:spr:coopap:v:63:y:2016:i:1:p:273-303
    DOI: 10.1007/s10589-015-9770-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-015-9770-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-015-9770-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deren Han & Xiaoming Yuan, 2012. "A Note on the Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 227-238, October.
    2. Quoc Tran Dinh & Carlo Savorgnan & Moritz Diehl, 2013. "Combining Lagrangian decomposition and excessive gap smoothing technique for solving large-scale separable convex optimization problems," Computational Optimization and Applications, Springer, vol. 55(1), pages 75-111, May.
    3. A. Nedić & A. Ozdaglar, 2009. "Subgradient Methods for Saddle-Point Problems," Journal of Optimization Theory and Applications, Springer, vol. 142(1), pages 205-228, July.
    4. Bing-Sheng He, 2009. "Parallel splitting augmented Lagrangian methods for monotone structured variational inequalities," Computational Optimization and Applications, Springer, vol. 42(2), pages 195-212, March.
    5. Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
    6. Guoyong Gu & Bingsheng He & Xiaoming Yuan, 2014. "Customized proximal point algorithms for linearly constrained convex minimization and saddle-point problems: a unified approach," Computational Optimization and Applications, Springer, vol. 59(1), pages 135-161, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaning Jiang & Deren Han & Xingju Cai, 2022. "An efficient partial parallel method with scaling step size strategy for three-block convex optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(3), pages 383-419, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. K. Wang & D. R. Han & L. L. Xu, 2013. "A Parallel Splitting Method for Separable Convex Programs," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 138-158, October.
    2. Bingsheng He & Min Tao & Xiaoming Yuan, 2017. "Convergence Rate Analysis for the Alternating Direction Method of Multipliers with a Substitution Procedure for Separable Convex Programming," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 662-691, August.
    3. Deren Han & Xiaoming Yuan & Wenxing Zhang & Xingju Cai, 2013. "An ADM-based splitting method for separable convex programming," Computational Optimization and Applications, Springer, vol. 54(2), pages 343-369, March.
    4. Yaning Jiang & Deren Han & Xingju Cai, 2022. "An efficient partial parallel method with scaling step size strategy for three-block convex optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(3), pages 383-419, December.
    5. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    6. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    7. Puya Latafat & Panagiotis Patrinos, 2017. "Asymmetric forward–backward–adjoint splitting for solving monotone inclusions involving three operators," Computational Optimization and Applications, Springer, vol. 68(1), pages 57-93, September.
    8. Jian Guo & Elizaveta Levina & George Michailidis & Ji Zhu, 2010. "Pairwise Variable Selection for High-Dimensional Model-Based Clustering," Biometrics, The International Biometric Society, vol. 66(3), pages 793-804, September.
    9. Lu Tang & Ling Zhou & Peter X. K. Song, 2019. "Fusion learning algorithm to combine partially heterogeneous Cox models," Computational Statistics, Springer, vol. 34(1), pages 395-414, March.
    10. Molly C. Klanderman & Kathryn B. Newhart & Tzahi Y. Cath & Amanda S. Hering, 2020. "Fault isolation for a complex decentralized waste water treatment facility," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 931-951, August.
    11. Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.
    12. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    13. Victor Chernozhukov & Christian Hansen & Yuan Liao, 2015. "A lava attack on the recovery of sums of dense and sparse signals," CeMMAP working papers CWP56/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Luu, Tung Duy & Fadili, Jalal & Chesneau, Christophe, 2019. "PAC-Bayesian risk bounds for group-analysis sparse regression by exponential weighting," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 209-233.
    15. Takumi Saegusa & Tianzhou Ma & Gang Li & Ying Qing Chen & Mei-Ling Ting Lee, 2020. "Variable Selection in Threshold Regression Model with Applications to HIV Drug Adherence Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 376-398, December.
    16. Ngai Hang Chan & Chun Yip Yau & Rong-Mao Zhang, 2014. "Group LASSO for Structural Break Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 590-599, June.
    17. Lee Kyu Ha & Chakraborty Sounak & Sun Jianguo, 2011. "Bayesian Variable Selection in Semiparametric Proportional Hazards Model for High Dimensional Survival Data," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-32, April.
    18. Kun Jin & Yevgeniy Vorobeychik & Mingyan Liu, 2021. "Multi-Scale Games: Representing and Solving Games on Networks with Group Structure," Papers 2101.08314, arXiv.org.
    19. Butts, David J. & Thompson, Noelle E. & Christensen, Sonja A. & Williams, David M. & Murillo, Michael S., 2022. "Data-driven agent-based model building for animal movement through Exploratory Data Analysis," Ecological Modelling, Elsevier, vol. 470(C).
    20. Yanqin Bai & Xiao Han & Tong Chen & Hua Yu, 2015. "Quadratic kernel-free least squares support vector machine for target diseases classification," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 850-870, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:63:y:2016:i:1:p:273-303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.