IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v73y2019i3d10.1007_s10589-019-00087-9.html
   My bibliography  Save this article

Regularized Jacobi-type ADMM-methods for a class of separable convex optimization problems in Hilbert spaces

Author

Listed:
  • Eike Börgens

    (University of Würzburg)

  • Christian Kanzow

    (University of Würzburg)

Abstract

We consider a regularized version of a Jacobi-type alternating direction method of multipliers (ADMM) for the solution of a class of separable convex optimization problems in a Hilbert space. The analysis shows that this method is equivalent to the standard proximal-point method applied in a Hilbert space with a transformed scalar product. The method therefore inherits the known convergence results from the proximal-point method and allows suitable modifications to get a strongly convergent variant. Some additional properties are also shown by exploiting the particular structure of the ADMM-type solution method. Applications and numerical results are provided for the domain decomposition method and potential (generalized) Nash equilibrium problems in a Hilbert space setting.

Suggested Citation

  • Eike Börgens & Christian Kanzow, 2019. "Regularized Jacobi-type ADMM-methods for a class of separable convex optimization problems in Hilbert spaces," Computational Optimization and Applications, Springer, vol. 73(3), pages 755-790, July.
  • Handle: RePEc:spr:coopap:v:73:y:2019:i:3:d:10.1007_s10589-019-00087-9
    DOI: 10.1007/s10589-019-00087-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-019-00087-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-019-00087-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bingsheng He & Min Tao & Xiaoming Yuan, 2017. "Convergence Rate Analysis for the Alternating Direction Method of Multipliers with a Substitution Procedure for Separable Convex Programming," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 662-691, August.
    2. Yunda Dong, 2014. "The Proximal Point Algorithm Revisited," Journal of Optimization Theory and Applications, Springer, vol. 161(2), pages 478-489, May.
    3. Yunda Dong, 2015. "Comments on “The Proximal Point Algorithm Revisited”," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 343-349, July.
    4. Guoyong Gu & Bingsheng He & Xiaoming Yuan, 2014. "Customized proximal point algorithms for linearly constrained convex minimization and saddle-point problems: a unified approach," Computational Optimization and Applications, Springer, vol. 59(1), pages 135-161, October.
    5. Min Tao & Xiaoming Yuan, 2012. "An inexact parallel splitting augmented Lagrangian method for monotone variational inequalities with separable structures," Computational Optimization and Applications, Springer, vol. 52(2), pages 439-461, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinbao Jian & Chen Zhang & Jianghua Yin & Linfeng Yang & Guodong Ma, 2020. "Monotone Splitting Sequential Quadratic Optimization Algorithm with Applications in Electric Power Systems," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 226-247, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunda Dong, 2021. "Weak convergence of an extended splitting method for monotone inclusions," Journal of Global Optimization, Springer, vol. 79(1), pages 257-277, January.
    2. Feng Ma, 2019. "On relaxation of some customized proximal point algorithms for convex minimization: from variational inequality perspective," Computational Optimization and Applications, Springer, vol. 73(3), pages 871-901, July.
    3. Peixuan Li & Yuan Shen & Suhong Jiang & Zehua Liu & Caihua Chen, 2021. "Convergence study on strictly contractive Peaceman–Rachford splitting method for nonseparable convex minimization models with quadratic coupling terms," Computational Optimization and Applications, Springer, vol. 78(1), pages 87-124, January.
    4. Yanqin Bai & Xiao Han & Tong Chen & Hua Yu, 2015. "Quadratic kernel-free least squares support vector machine for target diseases classification," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 850-870, November.
    5. Liusheng Hou & Hongjin He & Junfeng Yang, 2016. "A partially parallel splitting method for multiple-block separable convex programming with applications to robust PCA," Computational Optimization and Applications, Springer, vol. 63(1), pages 273-303, January.
    6. Elisabetta Allevi & Adriana Gnudi & Igor V. Konnov & Giorgia Oggioni, 2017. "Dynamic Spatial Auction Market Models with General Cost Mappings," Networks and Spatial Economics, Springer, vol. 17(2), pages 367-403, June.
    7. Shengjie Xu & Bingsheng He, 2021. "A parallel splitting ALM-based algorithm for separable convex programming," Computational Optimization and Applications, Springer, vol. 80(3), pages 831-851, December.
    8. Hongjin He & Jitamitra Desai & Kai Wang, 2016. "A primal–dual prediction–correction algorithm for saddle point optimization," Journal of Global Optimization, Springer, vol. 66(3), pages 573-583, November.
    9. Zhongming Chen & Li Wan & Qingzhi Yang, 2014. "An Inexact Alternating Direction Method for Structured Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 439-459, November.
    10. J. Preininger & P. T. Vuong, 2018. "On the convergence of the gradient projection method for convex optimal control problems with bang–bang solutions," Computational Optimization and Applications, Springer, vol. 70(1), pages 221-238, May.
    11. Ruoyu Sun & Zhi-Quan Luo & Yinyu Ye, 2020. "On the Efficiency of Random Permutation for ADMM and Coordinate Descent," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 233-271, February.
    12. Yangyang Xu, 2019. "Asynchronous parallel primal–dual block coordinate update methods for affinely constrained convex programs," Computational Optimization and Applications, Springer, vol. 72(1), pages 87-113, January.
    13. Ying Gao & Wenxing Zhang, 2023. "An alternative extrapolation scheme of PDHGM for saddle point problem with nonlinear function," Computational Optimization and Applications, Springer, vol. 85(1), pages 263-291, May.
    14. Hongjin He & Chen Ling & Hong-Kun Xu, 2015. "A Relaxed Projection Method for Split Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 213-233, July.
    15. Bingsheng He & Xiaoming Yuan, 2018. "A class of ADMM-based algorithms for three-block separable convex programming," Computational Optimization and Applications, Springer, vol. 70(3), pages 791-826, July.
    16. Yaning Jiang & Deren Han & Xingju Cai, 2022. "An efficient partial parallel method with scaling step size strategy for three-block convex optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(3), pages 383-419, December.
    17. Yunda Dong, 2015. "Comments on “The Proximal Point Algorithm Revisited”," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 343-349, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:73:y:2019:i:3:d:10.1007_s10589-019-00087-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.