IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v80y2021i3d10.1007_s10589-021-00321-3.html
   My bibliography  Save this article

A parallel splitting ALM-based algorithm for separable convex programming

Author

Listed:
  • Shengjie Xu

    (Harbin Institute of Technology
    Southern University of Science and Technology)

  • Bingsheng He

    (Nanjing University)

Abstract

The augmented Lagrangian method (ALM) provides a benchmark for solving the canonical convex optimization problem with linear constraints. The direct extension of ALM for solving the multiple-block separable convex minimization problem, however, is proved to be not necessarily convergent in the literature. It has thus inspired a number of ALM-variant algorithms with provable convergence. This paper presents a novel parallel splitting method for the multiple-block separable convex optimization problem with linear equality constraints, which enjoys a larger step size compared with the existing parallel splitting methods. We first show that a fully Jacobian decomposition of the regularized ALM can contribute a descent direction yielding the contraction of proximity to the solution set; then, the new iterate is generated via a simple correction step with an ignorable computational cost. We establish the convergence analysis for the proposed method, and then demonstrate its numerical efficiency by solving an application problem arising in statistical learning.

Suggested Citation

  • Shengjie Xu & Bingsheng He, 2021. "A parallel splitting ALM-based algorithm for separable convex programming," Computational Optimization and Applications, Springer, vol. 80(3), pages 831-851, December.
  • Handle: RePEc:spr:coopap:v:80:y:2021:i:3:d:10.1007_s10589-021-00321-3
    DOI: 10.1007/s10589-021-00321-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-021-00321-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-021-00321-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bingsheng He & Feng Ma & Xiaoming Yuan, 2020. "Optimally linearizing the alternating direction method of multipliers for convex programming," Computational Optimization and Applications, Springer, vol. 75(2), pages 361-388, March.
    2. Bingsheng He & Min Tao & Xiaoming Yuan, 2017. "Convergence Rate Analysis for the Alternating Direction Method of Multipliers with a Substitution Procedure for Separable Convex Programming," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 662-691, August.
    3. Jianchao Bai & Jicheng Li & Fengmin Xu & Hongchao Zhang, 2018. "Generalized symmetric ADMM for separable convex optimization," Computational Optimization and Applications, Springer, vol. 70(1), pages 129-170, May.
    4. Bingsheng He & Xiaoming Yuan, 2018. "A class of ADMM-based algorithms for three-block separable convex programming," Computational Optimization and Applications, Springer, vol. 70(3), pages 791-826, July.
    5. William W. Hager & Hongchao Zhang, 2020. "Convergence rates for an inexact ADMM applied to separable convex optimization," Computational Optimization and Applications, Springer, vol. 77(3), pages 729-754, December.
    6. Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianchao Bai & William W. Hager & Hongchao Zhang, 2022. "An inexact accelerated stochastic ADMM for separable convex optimization," Computational Optimization and Applications, Springer, vol. 81(2), pages 479-518, March.
    2. Yaning Jiang & Deren Han & Xingju Cai, 2022. "An efficient partial parallel method with scaling step size strategy for three-block convex optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(3), pages 383-419, December.
    3. Peixuan Li & Yuan Shen & Suhong Jiang & Zehua Liu & Caihua Chen, 2021. "Convergence study on strictly contractive Peaceman–Rachford splitting method for nonseparable convex minimization models with quadratic coupling terms," Computational Optimization and Applications, Springer, vol. 78(1), pages 87-124, January.
    4. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    5. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    6. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    7. Maryam Yashtini, 2022. "Convergence and rate analysis of a proximal linearized ADMM for nonconvex nonsmooth optimization," Journal of Global Optimization, Springer, vol. 84(4), pages 913-939, December.
    8. Francis X. Diebold & Kamil Yilmaz, 2016. "Trans-Atlantic Equity Volatility Connectedness: U.S. and European Financial Institutions, 2004–2014," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 81-127.
    9. Jian Guo & Elizaveta Levina & George Michailidis & Ji Zhu, 2010. "Pairwise Variable Selection for High-Dimensional Model-Based Clustering," Biometrics, The International Biometric Society, vol. 66(3), pages 793-804, September.
    10. Franck Rapaport & Christina Leslie, 2010. "Determining Frequent Patterns of Copy Number Alterations in Cancer," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-10, August.
    11. Lu Tang & Ling Zhou & Peter X. K. Song, 2019. "Fusion learning algorithm to combine partially heterogeneous Cox models," Computational Statistics, Springer, vol. 34(1), pages 395-414, March.
    12. Young‐Geun Choi & Lawrence P. Hanrahan & Derek Norton & Ying‐Qi Zhao, 2022. "Simultaneous spatial smoothing and outlier detection using penalized regression, with application to childhood obesity surveillance from electronic health records," Biometrics, The International Biometric Society, vol. 78(1), pages 324-336, March.
    13. Feng Ma, 2019. "On relaxation of some customized proximal point algorithms for convex minimization: from variational inequality perspective," Computational Optimization and Applications, Springer, vol. 73(3), pages 871-901, July.
    14. Molly C. Klanderman & Kathryn B. Newhart & Tzahi Y. Cath & Amanda S. Hering, 2020. "Fault isolation for a complex decentralized waste water treatment facility," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 931-951, August.
    15. Wang, Li-Yu & Park, Cheolwoo & Yeon, Kyupil & Choi, Hosik, 2017. "Tracking concept drift using a constrained penalized regression combiner," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 52-69.
    16. Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.
    17. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    18. William W. Hager & Hongchao Zhang, 2020. "Convergence rates for an inexact ADMM applied to separable convex optimization," Computational Optimization and Applications, Springer, vol. 77(3), pages 729-754, December.
    19. Murat Genç & M. Revan Özkale, 2021. "Usage of the GO estimator in high dimensional linear models," Computational Statistics, Springer, vol. 36(1), pages 217-239, March.
    20. Aytug, Haldun & Sayın, Serpil, 2012. "Exploring the trade-off between generalization and empirical errors in a one-norm SVM," European Journal of Operational Research, Elsevier, vol. 218(3), pages 667-675.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:80:y:2021:i:3:d:10.1007_s10589-021-00321-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.