IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v202y2024i1d10.1007_s10957-022-02058-3.html
   My bibliography  Save this article

Tight Ergodic Sublinear Convergence Rate of the Relaxed Proximal Point Algorithm for Monotone Variational Inequalities

Author

Listed:
  • Guoyong Gu

    (Nanjing University)

  • Junfeng Yang

    (Nanjing University)

Abstract

This paper considers the relaxed proximal point algorithm for solving monotone variational inequality problems, and our main contribution is the establishment of a tight ergodic sublinear convergence rate. First, the tight or exact worst-case convergence rate is computed using the performance estimation framework. It is observed that this numerical bound asymptotically coincides with the best-known existing rate, whose tightness is not clear. This implies that, without further assumptions, sublinear convergence rate is likely the best achievable rate for the relaxed proximal point algorithm. Motivated by the numerical result, a concrete example is constructed, which provides a lower bound on the exact worst-case convergence rate. This lower bound coincides with the numerical bound computed via the performance estimation framework, leading us to conjecture that the lower bound provided by the example is exactly the tight worse-case rate, which is then verified theoretically. We thus have established an ergodic sublinear complexity rate that is tight in terms of both the sublinear order and the constants involved.

Suggested Citation

  • Guoyong Gu & Junfeng Yang, 2024. "Tight Ergodic Sublinear Convergence Rate of the Relaxed Proximal Point Algorithm for Monotone Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 373-387, July.
  • Handle: RePEc:spr:joptap:v:202:y:2024:i:1:d:10.1007_s10957-022-02058-3
    DOI: 10.1007/s10957-022-02058-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-022-02058-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-022-02058-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:202:y:2024:i:1:d:10.1007_s10957-022-02058-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.