IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v59y2014i1p135-161.html
   My bibliography  Save this article

Customized proximal point algorithms for linearly constrained convex minimization and saddle-point problems: a unified approach

Author

Listed:
  • Guoyong Gu
  • Bingsheng He
  • Xiaoming Yuan

Abstract

This paper focuses on some customized applications of the proximal point algorithm (PPA) to two classes of problems: the convex minimization problem with linear constraints and a generic or separable objective function, and a saddle-point problem. We treat these two classes of problems uniformly by a mixed variational inequality, and show how the application of PPA with customized metric proximal parameters can yield favorable algorithms which are able to make use of the models’ structures effectively. Our customized PPA revisit turns out to unify some algorithms including some existing ones in the literature and some new ones to be proposed. From the PPA perspective, we establish the global convergence and a worst-case O(1/t) convergence rate for this series of algorithms in a unified way. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Guoyong Gu & Bingsheng He & Xiaoming Yuan, 2014. "Customized proximal point algorithms for linearly constrained convex minimization and saddle-point problems: a unified approach," Computational Optimization and Applications, Springer, vol. 59(1), pages 135-161, October.
  • Handle: RePEc:spr:coopap:v:59:y:2014:i:1:p:135-161
    DOI: 10.1007/s10589-013-9616-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-013-9616-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-013-9616-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B. S. He & X. L. Fu & Z. K. Jiang, 2009. "Proximal-Point Algorithm Using a Linear Proximal Term," Journal of Optimization Theory and Applications, Springer, vol. 141(2), pages 299-319, May.
    2. Sun, Jie & Zhang, Su, 2010. "A modified alternating direction method for convex quadratically constrained quadratic semidefinite programs," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1210-1220, December.
    3. R. T. Rockafellar, 1976. "Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 97-116, May.
    4. Jong-Shi Pang & Masao Fukushima, 2005. "Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games," Computational Management Science, Springer, vol. 2(1), pages 21-56, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongjin He & Jitamitra Desai & Kai Wang, 2016. "A primal–dual prediction–correction algorithm for saddle point optimization," Journal of Global Optimization, Springer, vol. 66(3), pages 573-583, November.
    2. Ying Gao & Wenxing Zhang, 2023. "An alternative extrapolation scheme of PDHGM for saddle point problem with nonlinear function," Computational Optimization and Applications, Springer, vol. 85(1), pages 263-291, May.
    3. Guoyong Gu & Junfeng Yang, 2024. "Tight Ergodic Sublinear Convergence Rate of the Relaxed Proximal Point Algorithm for Monotone Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 373-387, July.
    4. Yanqin Bai & Xiao Han & Tong Chen & Hua Yu, 2015. "Quadratic kernel-free least squares support vector machine for target diseases classification," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 850-870, November.
    5. Feng Ma, 2019. "On relaxation of some customized proximal point algorithms for convex minimization: from variational inequality perspective," Computational Optimization and Applications, Springer, vol. 73(3), pages 871-901, July.
    6. Liusheng Hou & Hongjin He & Junfeng Yang, 2016. "A partially parallel splitting method for multiple-block separable convex programming with applications to robust PCA," Computational Optimization and Applications, Springer, vol. 63(1), pages 273-303, January.
    7. Eike Börgens & Christian Kanzow, 2019. "Regularized Jacobi-type ADMM-methods for a class of separable convex optimization problems in Hilbert spaces," Computational Optimization and Applications, Springer, vol. 73(3), pages 755-790, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bingsheng He & Min Tao & Xiaoming Yuan, 2017. "Convergence Rate Analysis for the Alternating Direction Method of Multipliers with a Substitution Procedure for Separable Convex Programming," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 662-691, August.
    2. L. F. Bueno & G. Haeser & F. Lara & F. N. Rojas, 2020. "An Augmented Lagrangian method for quasi-equilibrium problems," Computational Optimization and Applications, Springer, vol. 76(3), pages 737-766, July.
    3. Min Tao & Xiaoming Yuan, 2018. "On Glowinski’s Open Question on the Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 163-196, October.
    4. K. Wang & D. R. Han & L. L. Xu, 2013. "A Parallel Splitting Method for Separable Convex Programs," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 138-158, October.
    5. Axel Dreves & Christian Kanzow, 2011. "Nonsmooth optimization reformulations characterizing all solutions of jointly convex generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 50(1), pages 23-48, September.
    6. Mauricio Romero Sicre, 2020. "On the complexity of a hybrid proximal extragradient projective method for solving monotone inclusion problems," Computational Optimization and Applications, Springer, vol. 76(3), pages 991-1019, July.
    7. Flam, Sjur & Ruszczynski, A., 2006. "Computing Normalized Equilibria in Convex-Concave Games," Working Papers 2006:9, Lund University, Department of Economics.
    8. Giorgia Oggioni & Yves Smeers & Elisabetta Allevi & Siegfried Schaible, 2012. "A Generalized Nash Equilibrium Model of Market Coupling in the European Power System," Networks and Spatial Economics, Springer, vol. 12(4), pages 503-560, December.
    9. Jean-Pierre Crouzeix & Abdelhak Hassouni & Eladio Ocaña, 2023. "A Short Note on the Twice Differentiability of the Marginal Function of a Convex Function," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 857-867, August.
    10. Liang Chen & Anping Liao, 2020. "On the Convergence Properties of a Second-Order Augmented Lagrangian Method for Nonlinear Programming Problems with Inequality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 248-265, October.
    11. Alejandro Jofré & R. Terry Rockafellar & Roger J-B. Wets, 2007. "Variational Inequalities and Economic Equilibrium," Mathematics of Operations Research, INFORMS, vol. 32(1), pages 32-50, February.
    12. Ciarcià, Carla & Daniele, Patrizia, 2016. "New existence theorems for quasi-variational inequalities and applications to financial models," European Journal of Operational Research, Elsevier, vol. 251(1), pages 288-299.
    13. Stefano Cipolla & Jacek Gondzio, 2023. "Proximal Stabilized Interior Point Methods and Low-Frequency-Update Preconditioning Techniques," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1061-1103, June.
    14. Bingsheng He & Li-Zhi Liao & Xiang Wang, 2012. "Proximal-like contraction methods for monotone variational inequalities in a unified framework I: Effective quadruplet and primary methods," Computational Optimization and Applications, Springer, vol. 51(2), pages 649-679, March.
    15. Marwan A. Kutbi & Abdul Latif & Xiaolong Qin, 2019. "Convergence of Two Splitting Projection Algorithms in Hilbert Spaces," Mathematics, MDPI, vol. 7(10), pages 1-13, October.
    16. Darinka Dentcheva & Gabriela Martinez & Eli Wolfhagen, 2016. "Augmented Lagrangian Methods for Solving Optimization Problems with Stochastic-Order Constraints," Operations Research, INFORMS, vol. 64(6), pages 1451-1465, December.
    17. Gui-Hua Lin & Zhen-Ping Yang & Hai-An Yin & Jin Zhang, 2023. "A dual-based stochastic inexact algorithm for a class of stochastic nonsmooth convex composite problems," Computational Optimization and Applications, Springer, vol. 86(2), pages 669-710, November.
    18. Contreras, Javier & Krawczyk, Jacek & Zuccollo, James, 2008. "The invisible polluter: Can regulators save consumer surplus?," MPRA Paper 9890, University Library of Munich, Germany.
    19. Xiaoming Yuan, 2011. "An improved proximal alternating direction method for monotone variational inequalities with separable structure," Computational Optimization and Applications, Springer, vol. 49(1), pages 17-29, May.
    20. Ludovic A. Julien, 2024. "Noncooperative oligopoly equilibrium in markets with hierarchical competition," International Journal of Game Theory, Springer;Game Theory Society, vol. 53(2), pages 325-371, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:59:y:2014:i:1:p:135-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.