IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v127y2024ics0305048324000756.html
   My bibliography  Save this article

Distributed real-time pricing of smart grid considering individual differences

Author

Listed:
  • Qu, Deqiang
  • Li, Junxiang
  • Ma, Xiaojia

Abstract

The utility function that characterizes customers’ satisfaction with electricity consumption plays an important and irreplaceable role in the real-time pricing mechanism based on the social welfare maximization model. Without the accurate quantification of customers’ utility, the real-time pricing will deviate from the reality. In fact, the utility functions of different types of customers in different regions should be obtained by fitting a large amount of historical data over a long period of time based on insight into the relationship between factors and utility. Based on the consideration of customers’ individual differences, a new utility function is proposed, which enriches the form of the utility function and provides a reference for fitting a real and accurate utility function. Further, based on this proposed utility function, a real-time pricing model of social welfare maximization is developed to obtain the fair electricity price between customers and the power supplier. On the basis of the separable structure of variables, we design distributed algorithms with global convergence for the pricing model and estimate a worst-case convergence rate. Numerical simulations verify the feasibility and effectiveness of our algorithms and the rationality of the new utility function, i.e., the electricity price based on the proposed utility function is more robust than the existing ones.

Suggested Citation

  • Qu, Deqiang & Li, Junxiang & Ma, Xiaojia, 2024. "Distributed real-time pricing of smart grid considering individual differences," Omega, Elsevier, vol. 127(C).
  • Handle: RePEc:eee:jomega:v:127:y:2024:i:c:s0305048324000756
    DOI: 10.1016/j.omega.2024.103109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048324000756
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2024.103109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuan, Guanxiu & Gao, Yan & Ye, Bei, 2021. "Optimal dispatching strategy and real-time pricing for multi-regional integrated energy systems based on demand response," Renewable Energy, Elsevier, vol. 179(C), pages 1424-1446.
    2. Iris, Çağatay & Lam, Jasmine Siu Lee, 2021. "Optimal energy management and operations planning in seaports with smart grid while harnessing renewable energy under uncertainty," Omega, Elsevier, vol. 103(C).
    3. Anette Boom & Sebastian Schwenen, 2021. "Is real-time pricing smart for consumers?," Journal of Regulatory Economics, Springer, vol. 60(2), pages 193-213, December.
    4. Bingsheng He & Min Tao & Xiaoming Yuan, 2017. "Convergence Rate Analysis for the Alternating Direction Method of Multipliers with a Substitution Procedure for Separable Convex Programming," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 662-691, August.
    5. Bing-Sheng He, 2009. "Parallel splitting augmented Lagrangian methods for monotone structured variational inequalities," Computational Optimization and Applications, Springer, vol. 42(2), pages 195-212, March.
    6. Li, Yuanyuan & Li, Junxiang & He, Jianjia & Zhang, Shuyuan, 2021. "The real-time pricing optimization model of smart grid based on the utility function of the logistic function," Energy, Elsevier, vol. 224(C).
    7. Hongbo Zhu & Yan Gao & Yong Hou, 2018. "Real-Time Pricing for Demand Response in Smart Grid Based on Alternating Direction Method of Multipliers," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-10, January.
    8. Yunrong Zhang & Christoph H. Glock & Zhixiang Chen, 2022. "Estimating the participation value of electricity demand-response programmes for a two-stage production system," International Journal of Production Research, Taylor & Francis Journals, vol. 60(21), pages 6508-6528, November.
    9. Grimm, Veronika & Orlinskaya, Galina & Schewe, Lars & Schmidt, Martin & Zöttl, Gregor, 2021. "Optimal design of retailer-prosumer electricity tariffs using bilevel optimization," Omega, Elsevier, vol. 102(C).
    10. Yongbo Xiao, 2018. "Dynamic pricing and replenishment: Optimality, bounds, and asymptotics," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(1), pages 3-25, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Ningning & Gao, Yan, 2023. "Real-time pricing based on convex hull method for smart grid with multiple generating units," Energy, Elsevier, vol. 285(C).
    2. Chargui, Kaoutar & Zouadi, Tarik & Sreedharan, V. Raja & El Fallahi, Abdellah & Reghioui, Mohamed, 2023. "A novel robust exact decomposition algorithm for berth and quay crane allocation and scheduling problem considering uncertainty and energy efficiency," Omega, Elsevier, vol. 118(C).
    3. Yaning Jiang & Deren Han & Xingju Cai, 2022. "An efficient partial parallel method with scaling step size strategy for three-block convex optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(3), pages 383-419, December.
    4. Domenico Gattuso & Domenica Savia Pellicanò, 2023. "HUs Fleet Management in an Automated Container Port: Assessment by a Simulation Approach," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    5. Minjeong Sim & Dongjun Suh & Marc-Oliver Otto, 2021. "Multi-Objective Particle Swarm Optimization-Based Decision Support Model for Integrating Renewable Energy Systems in a Korean Campus Building," Sustainability, MDPI, vol. 13(15), pages 1-18, August.
    6. Peixuan Li & Yuan Shen & Suhong Jiang & Zehua Liu & Caihua Chen, 2021. "Convergence study on strictly contractive Peaceman–Rachford splitting method for nonseparable convex minimization models with quadratic coupling terms," Computational Optimization and Applications, Springer, vol. 78(1), pages 87-124, January.
    7. Kun Jin & Yevgeniy Vorobeychik & Mingyan Liu, 2021. "Multi-Scale Games: Representing and Solving Games on Networks with Group Structure," Papers 2101.08314, arXiv.org.
    8. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    9. Zixiao Ban & Fei Teng & Huifeng Zhang & Shuo Li & Geyang Xiao & Yajuan Guan, 2023. "Distributed Fixed-Time Energy Management for Port Microgrid Considering Transmissive Efficiency," Mathematics, MDPI, vol. 11(17), pages 1-13, August.
    10. Amr Saleh & Walid A. Omran & Hany M. Hasanien & Marcos Tostado-Véliz & Abdulaziz Alkuhayli & Francisco Jurado, 2022. "Manta Ray Foraging Optimization for the Virtual Inertia Control of Islanded Microgrids Including Renewable Energy Sources," Sustainability, MDPI, vol. 14(7), pages 1-19, April.
    11. Pengxiang Song & Wenchuan Song & Ao Meng & Hongxue Li, 2024. "Adaptive Equivalent Factor-Based Energy Management Strategy for Plug-In Hybrid Electric Buses Considering Passenger Load Variations," Energies, MDPI, vol. 17(6), pages 1-30, March.
    12. Xia, Tangbin & Si, Guojin & Shi, Guo & Zhang, Kaigan & Xi, Lifeng, 2022. "Optimal selective maintenance scheduling for series–parallel systems based on energy efficiency optimization," Applied Energy, Elsevier, vol. 314(C).
    13. Bio Gassi, Karim & Baysal, Mustafa, 2023. "Improving real-time energy decision-making model with an actor-critic agent in modern microgrids with energy storage devices," Energy, Elsevier, vol. 263(PE).
    14. Liusheng Hou & Hongjin He & Junfeng Yang, 2016. "A partially parallel splitting method for multiple-block separable convex programming with applications to robust PCA," Computational Optimization and Applications, Springer, vol. 63(1), pages 273-303, January.
    15. Mahdi Azimian & Vahid Amir & Reza Habibifar & Hessam Golmohamadi, 2021. "Probabilistic Optimization of Networked Multi-Carrier Microgrids to Enhance Resilience Leveraging Demand Response Programs," Sustainability, MDPI, vol. 13(11), pages 1-30, May.
    16. Peipei You & Sitao Li & Chengren Li & Chao Zhang & Hailang Zhou & Huicai Wang & Huiru Zhao & Yihang Zhao, 2023. "Price-Based Demand Response: A Three-Stage Monthly Time-of-Use Tariff Optimization Model," Energies, MDPI, vol. 16(23), pages 1-20, November.
    17. David Holder & Steven David Percy & Ali Yavari, 2024. "A Review of Port Decarbonisation Options: Identified Opportunities for Deploying Hydrogen Technologies," Sustainability, MDPI, vol. 16(8), pages 1-36, April.
    18. Wang, Yudong & Hu, Junjie, 2023. "Two-stage energy management method of integrated energy system considering pre-transaction behavior of energy service provider and users," Energy, Elsevier, vol. 271(C).
    19. Vaughan, Jim & Doumen, Sjoerd C. & Kok, Koen, 2023. "Empowering tomorrow, controlling today: A multi-criteria assessment of distribution grid tariff designs," Applied Energy, Elsevier, vol. 341(C).
    20. Hughes, Michael S. & Lunday, Brian J., 2022. "The Weapon Target Assignment Problem: Rational Inference of Adversary Target Utility Valuations from Observed Solutions," Omega, Elsevier, vol. 107(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:127:y:2024:i:c:s0305048324000756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.