IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v30y2015i4p1199-1229.html
   My bibliography  Save this article

Maximum likelihood estimation for a special exponential family under random double-truncation

Author

Listed:
  • Ya-Hsuan Hu
  • Takeshi Emura

Abstract

Doubly-truncated data often appear in lifetime data analysis, where samples are collected under certain time constraints. Nonparametric methods for doubly-truncated data have been studied well in the literature. Alternatively, this paper considers parametric inference when samples are subject to double-truncation. Efron and Petrosian (J Am Stat Assoc 94:824–834, 1999 ) proposed to fit a parametric family, called the special exponential family, with doubly-truncated data. However, non-trivial technical aspects, such as parameter space, support of the density, and computational algorithms, have not been discussed in the literature. This paper fills this gap by providing the technical aspects, including adequate choices of parameter space as well as support, and reliable computational algorithms. Simulations are conducted to verify the suggested techniques, and real data are used for illustration. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Ya-Hsuan Hu & Takeshi Emura, 2015. "Maximum likelihood estimation for a special exponential family under random double-truncation," Computational Statistics, Springer, vol. 30(4), pages 1199-1229, December.
  • Handle: RePEc:spr:compst:v:30:y:2015:i:4:p:1199-1229
    DOI: 10.1007/s00180-015-0564-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-015-0564-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-015-0564-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moreira, Carla & Van Keilegom, Ingrid, 2013. "Bandwidth selection for kernel density estimation with doubly truncated data," LIDAM Reprints ISBA 2013018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Pao-sheng Shen, 2010. "Nonparametric analysis of doubly truncated data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(5), pages 835-853, October.
    3. Henry T Robertson & David B Allison, 2012. "A Novel Generalized Normal Distribution for Human Longevity and other Negatively Skewed Data," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-7, May.
    4. Alexander Shapiro & Jos Berge, 2002. "Statistical inference of minimum rank factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 67(1), pages 79-94, March.
    5. Carla Moreira & Jacobo Uña-Álvarez & Ingrid Keilegom, 2014. "Goodness-of-fit tests for a semiparametric model under random double truncation," Computational Statistics, Springer, vol. 29(5), pages 1365-1379, October.
    6. Yi-Hau Chen, 2009. "Weighted Breslow-type and maximum likelihood estimation in semiparametric transformation models," Biometrika, Biometrika Trust, vol. 96(3), pages 591-600.
    7. Long, Ting-Hsuan & Emura, Takeshi, 2014. "A control chart using copula-based Markov chain models," MPRA Paper 57419, University Library of Munich, Germany.
    8. Moreira, C. & Van Keilegom, I., 2013. "Bandwidth selection for kernel density estimation with doubly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 107-123.
    9. P. Sankaran & S. Sunoj, 2004. "Identification of models using failure rate and mean residual life of doubly truncated random variables," Statistical Papers, Springer, vol. 45(1), pages 97-109, January.
    10. Joan Castillo, 1994. "The singly truncated normal distribution: A non-steep exponential family," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(1), pages 57-66, March.
    11. Hong Zhu & Mei-Cheng Wang, 2012. "Analysing bivariate survival data with interval sampling and application to cancer epidemiology," Biometrika, Biometrika Trust, vol. 99(2), pages 345-361.
    12. Winfried Stute & Wenceslao Manteiga & Manuel Quindimil, 1993. "Bootstrap based goodness-of-fit-tests," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 40(1), pages 243-256, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takeshi Emura & Chi-Hung Pan, 2020. "Parametric likelihood inference and goodness-of-fit for dependently left-truncated data, a copula-based approach," Statistical Papers, Springer, vol. 61(1), pages 479-501, February.
    2. Pao-sheng Shen & Yi Liu, 2019. "Pseudo maximum likelihood estimation for the Cox model with doubly truncated data," Statistical Papers, Springer, vol. 60(4), pages 1207-1224, August.
    3. Yunhan Liu & Changchun Gao & Xiaofeng Liu & Ping Luo & Jianguo Ren, 2024. "A Comparison of MLE for Some Index Distributions Based on Censored Samples," Mathematics, MDPI, vol. 12(20), pages 1-15, October.
    4. Jia-Han Shih & Takeshi Emura, 2018. "Likelihood-based inference for bivariate latent failure time models with competing risks under the generalized FGM copula," Computational Statistics, Springer, vol. 33(3), pages 1293-1323, September.
    5. Achim Dörre, 2020. "Bayesian estimation of a lifetime distribution under double truncation caused by time-restricted data collection," Statistical Papers, Springer, vol. 61(3), pages 945-965, June.
    6. Takeshi Emura & Ya-Hsuan Hu & Yoshihiko Konno, 2017. "Asymptotic inference for maximum likelihood estimators under the special exponential family with double-truncation," Statistical Papers, Springer, vol. 58(3), pages 877-909, September.
    7. Shen, Pao-sheng & Hsu, Huichen, 2020. "Conditional maximum likelihood estimation for semiparametric transformation models with doubly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    8. Achim Dörre & Chung-Yan Huang & Yi-Kuan Tseng & Takeshi Emura, 2021. "Likelihood-based analysis of doubly-truncated data under the location-scale and AFT model," Computational Statistics, Springer, vol. 36(1), pages 375-408, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takeshi Emura & Ya-Hsuan Hu & Yoshihiko Konno, 2017. "Asymptotic inference for maximum likelihood estimators under the special exponential family with double-truncation," Statistical Papers, Springer, vol. 58(3), pages 877-909, September.
    2. Achim Dörre & Chung-Yan Huang & Yi-Kuan Tseng & Takeshi Emura, 2021. "Likelihood-based analysis of doubly-truncated data under the location-scale and AFT model," Computational Statistics, Springer, vol. 36(1), pages 375-408, March.
    3. Pao-sheng Shen & Yi Liu, 2019. "Pseudo maximum likelihood estimation for the Cox model with doubly truncated data," Statistical Papers, Springer, vol. 60(4), pages 1207-1224, August.
    4. Carla Moreira & Jacobo de Uña-Álvarez & Roel Braekers, 2021. "Nonparametric estimation of a distribution function from doubly truncated data under dependence," Computational Statistics, Springer, vol. 36(3), pages 1693-1720, September.
    5. Qui Tran & Kelley M. Kidwell & Alex Tsodikov, 2018. "A joint model of cancer incidence, metastasis, and mortality," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(3), pages 385-406, July.
    6. Nowak, Piotr Bolesław, 2016. "The MLE of the mean of the exponential distribution based on grouped data is stochastically increasing," Statistics & Probability Letters, Elsevier, vol. 111(C), pages 49-54.
    7. Camilo Alberto Cárdenas-Hurtado & Aaron Levi Garavito-Acosta & Jorge Hernán Toro-Córdoba, 2018. "Asymmetric Effects of Terms of Trade Shocks on Tradable and Non-tradable Investment Rates: The Colombian Case," Borradores de Economia 1043, Banco de la Republica de Colombia.
    8. Anastasiou, Andreas, 2017. "Bounds for the normal approximation of the maximum likelihood estimator from m-dependent random variables," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 171-181.
    9. Evelina Di Corso & Tania Cerquitelli & Daniele Apiletti, 2018. "METATECH: METeorological Data Analysis for Thermal Energy CHaracterization by Means of Self-Learning Transparent Models," Energies, MDPI, vol. 11(6), pages 1-24, May.
    10. Silva, Ivair R., 2017. "Confidence intervals through sequential Monte Carlo," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 112-124.
    11. Antonio Di Crescenzo & Abdolsaeed Toomaj, 2022. "Weighted Mean Inactivity Time Function with Applications," Mathematics, MDPI, vol. 10(16), pages 1-30, August.
    12. Denter, Philipp & Sisak, Dana, 2015. "Do polls create momentum in political competition?," Journal of Public Economics, Elsevier, vol. 130(C), pages 1-14.
    13. Salgado Alfredo, 2018. "Incomplete Information and Costly Signaling in College Admissions," Working Papers 2018-23, Banco de México.
    14. Albrecht, James & Anderson, Axel & Vroman, Susan, 2010. "Search by committee," Journal of Economic Theory, Elsevier, vol. 145(4), pages 1386-1407, July.
    15. Stegeman, Alwin, 2016. "A new method for simultaneous estimation of the factor model parameters, factor scores, and unique parts," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 189-203.
    16. Mauricio Romero & Ã lvaro Riascos & Diego Jara, 2015. "On the Optimality of Answer-Copying Indices," Journal of Educational and Behavioral Statistics, , vol. 40(5), pages 435-453, October.
    17. Chen, Yunxiao & Moustaki, Irini & Zhang, H, 2020. "A note on likelihood ratio tests for models with latent variables," LSE Research Online Documents on Economics 107490, London School of Economics and Political Science, LSE Library.
    18. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2023. "Risk aggregation with FGM copulas," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 102-120.
    19. Zhu, Qiansheng & Lang, Joseph B., 2022. "Test-inversion confidence intervals for estimands in contingency tables subject to equality constraints," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    20. van Bentum, Thomas & Cramer, Erhard, 2019. "Stochastic monotonicity of MLEs of the mean for exponentially distributed lifetimes under hybrid censoring," Statistics & Probability Letters, Elsevier, vol. 148(C), pages 1-8.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:30:y:2015:i:4:p:1199-1229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.