IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v99y2012i2p345-361.html
   My bibliography  Save this article

Analysing bivariate survival data with interval sampling and application to cancer epidemiology

Author

Listed:
  • Hong Zhu
  • Mei-Cheng Wang

Abstract

In biomedical studies, ordered bivariate survival data are frequently encountered when bivariate failure events are used as outcomes to identify the progression of a disease. In cancer studies, interest could be focused on bivariate failure times, for example, time from birth to cancer onset and time from cancer onset to death. This paper considers a sampling scheme, termed interval sampling, in which the first failure event is identified within a calendar time interval, the time of the initiating event can be retrospectively confirmed and the occurrence of the second failure event is observed subject to right censoring. In a cancer data application, the initiating, first and second events could correspond to birth, cancer onset and death. The fact that the data are collected conditional on the first failure event occurring within a time interval induces bias. Interval sampling is widely used for collection of disease registry data by governments and medical institutions, though the interval sampling bias is frequently overlooked by researchers. This paper develops statistical methods for analysing such data. Semiparametric methods are proposed under semi-stationarity and stationarity. Numerical studies demonstrate that the proposed estimation approaches perform well with moderate sample sizes. We apply the proposed methods to ovarian cancer registry data. Copyright 2012, Oxford University Press.

Suggested Citation

  • Hong Zhu & Mei-Cheng Wang, 2012. "Analysing bivariate survival data with interval sampling and application to cancer epidemiology," Biometrika, Biometrika Trust, vol. 99(2), pages 345-361.
  • Handle: RePEc:oup:biomet:v:99:y:2012:i:2:p:345-361
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/ass009
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jieli Ding & Tsui-Shan Lu & Jianwen Cai & Haibo Zhou, 2017. "Recent progresses in outcome-dependent sampling with failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 57-82, January.
    2. Ya-Hsuan Hu & Takeshi Emura, 2015. "Maximum likelihood estimation for a special exponential family under random double-truncation," Computational Statistics, Springer, vol. 30(4), pages 1199-1229, December.
    3. Carla Moreira & Jacobo de Uña-Álvarez & Roel Braekers, 2021. "Nonparametric estimation of a distribution function from doubly truncated data under dependence," Computational Statistics, Springer, vol. 36(3), pages 1693-1720, September.
    4. Zhang, Qiaozhen & Dai, Hongsheng & Fu, Bo, 2016. "A proportional hazards model for time-to-event data with epidemiological bias," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 224-236.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:99:y:2012:i:2:p:345-361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.