IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v96y2009i3p591-600.html
   My bibliography  Save this article

Weighted Breslow-type and maximum likelihood estimation in semiparametric transformation models

Author

Listed:
  • Yi-Hau Chen

Abstract

A semiparametric transformation model comprises a parametric component for covariate effects and a nonparametric component for the baseline hazard/intensity. The Breslow-type estimator has been proposed for estimating the nonparametric component in some inefficient estimation procedures. We show that introducing weights into this estimator leads to nonparametric maximum likelihood estimation, with the weights depending on the martingale residuals. The weighted Breslow-type estimator suggests an iterative reweighting algorithm for nonparametric maximum likelihood estimation, which can be implemented by a weighted variant of the existing algorithms for inefficient estimation, and can be computationally more efficient than an em -type algorithm. The weighting idea is further extended to semiparametric transformation models with mismeasured covariates. Copyright 2009, Oxford University Press.

Suggested Citation

  • Yi-Hau Chen, 2009. "Weighted Breslow-type and maximum likelihood estimation in semiparametric transformation models," Biometrika, Biometrika Trust, vol. 96(3), pages 591-600.
  • Handle: RePEc:oup:biomet:v:96:y:2009:i:3:p:591-600
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asp032
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qui Tran & Kelley M. Kidwell & Alex Tsodikov, 2018. "A joint model of cancer incidence, metastasis, and mortality," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(3), pages 385-406, July.
    2. Xi Ning & Yinghao Pan & Yanqing Sun & Peter B. Gilbert, 2023. "A semiparametric Cox–Aalen transformation model with censored data," Biometrics, The International Biometric Society, vol. 79(4), pages 3111-3125, December.
    3. Sangbum Choi & Xuelin Huang, 2014. "Maximum likelihood estimation of semiparametric mixture component models for competing risks data," Biometrics, The International Biometric Society, vol. 70(3), pages 588-598, September.
    4. Ya-Hsuan Hu & Takeshi Emura, 2015. "Maximum likelihood estimation for a special exponential family under random double-truncation," Computational Statistics, Springer, vol. 30(4), pages 1199-1229, December.
    5. Yi‐Hau Chen, 2010. "Semiparametric marginal regression analysis for dependent competing risks under an assumed copula," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(2), pages 235-251, March.
    6. Chi-Chung Wen & Yi-Hau Chen, 2014. "Semiparametric analysis of incomplete current status outcome data under transformation models," Biometrics, The International Biometric Society, vol. 70(2), pages 335-345, June.
    7. Sangbum Choi & Xuelin Huang, 2012. "A General Class of Semiparametric Transformation Frailty Models for Nonproportional Hazards Survival Data," Biometrics, The International Biometric Society, vol. 68(4), pages 1126-1135, December.
    8. Zhao, Yichuan, 2010. "Semiparametric inference for transformation models via empirical likelihood," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1846-1858, September.
    9. Chyong-Mei Chen & Pao-sheng Shen & Yi Liu, 2021. "On semiparametric transformation model with LTRC data: pseudo likelihood approach," Statistical Papers, Springer, vol. 62(1), pages 3-30, February.
    10. John D. Rice & Alex Tsodikov, 2017. "Semiparametric time-to-event modeling in the presence of a latent progression event," Biometrics, The International Biometric Society, vol. 73(2), pages 463-472, June.
    11. Chia-Hui Huang, 2019. "Mixture regression models for the gap time distributions and illness–death processes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 168-188, January.
    12. Guoqing Diao & Donglin Zeng & Song Yang, 2013. "Efficient Semiparametric Estimation of Short-Term and Long-Term Hazard Ratios with Right-Censored Data," Biometrics, The International Biometric Society, vol. 69(4), pages 840-849, December.
    13. Chyong-Mei Chen & Pao-Sheng Shen, 2018. "Conditional maximum likelihood estimation in semiparametric transformation model with LTRC data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(2), pages 250-272, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:96:y:2009:i:3:p:591-600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.