IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v46y1994i1p57-66.html
   My bibliography  Save this article

The singly truncated normal distribution: A non-steep exponential family

Author

Listed:
  • Joan Castillo

Abstract

No abstract is available for this item.

Suggested Citation

  • Joan Castillo, 1994. "The singly truncated normal distribution: A non-steep exponential family," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(1), pages 57-66, March.
  • Handle: RePEc:spr:aistmt:v:46:y:1994:i:1:p:57-66
    DOI: 10.1007/BF00773592
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF00773592
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF00773592?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takeshi Emura & Ya-Hsuan Hu & Yoshihiko Konno, 2017. "Asymptotic inference for maximum likelihood estimators under the special exponential family with double-truncation," Statistical Papers, Springer, vol. 58(3), pages 877-909, September.
    2. Hisano, Ryohei & Mizuno, Takayuki, 2011. "Sales distribution of consumer electronics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 309-318.
    3. Joan Del Castillo & Marta PĂ©rez-Casany, 1998. "Weighted Poisson Distributions for Overdispersion and Underdispersion Situations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(3), pages 567-585, September.
    4. Ya-Hsuan Hu & Takeshi Emura, 2015. "Maximum likelihood estimation for a special exponential family under random double-truncation," Computational Statistics, Springer, vol. 30(4), pages 1199-1229, December.
    5. Phuong, Nguyen Duc & Tuan, Nguyen Huy & Hammouch, Zakia & Sakthivel, Rathinasamy, 2021. "On a pseudo-parabolic equations with a non-local term of the Kirchhoff type with random Gaussian white noise," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    6. del Castillo, Joan & Daoudi, Jalila, 2009. "Estimation of the generalized Pareto distribution," Statistics & Probability Letters, Elsevier, vol. 79(5), pages 684-688, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:46:y:1994:i:1:p:57-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.