IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v169y2022ics0167947321002474.html
   My bibliography  Save this article

Test-inversion confidence intervals for estimands in contingency tables subject to equality constraints

Author

Listed:
  • Zhu, Qiansheng
  • Lang, Joseph B.

Abstract

The construction of test-inversion approximate confidence intervals is explored for estimands in contingency tables subject to equality constraints. Recommended test statistics include the difference in G2 statistic and nested versions of a family of power-divergence statistics. Efficient and robust computational algorithms are proposed. The computational approach herein is applicable for a broadened class of estimands and constraints: (1) Compared with existing standard methods, which are applicable only for likelihood-explicit estimands, our algorithms can also handle likelihood-implicit estimands, where the log-likelihood cannot be reparameterized in terms of the estimand of interest and a collection of nuisance parameters; (2) Only mild conditions on equality constraints are required, and it is unnecessary to re-express the constraints as a generalized linear model. A simulation study highlights the advantages of using likelihood-ratio intervals rather than bootstrap and Wald intervals, especially when cell counts are small and/or the true estimand is close to the boundary. In addition, appropriate loss functions are proposed to investigate efficiency gain upon imposing constraints. Examples are presented to illustrate the appropriateness of imposing constraints and the utility of test-inversion intervals.

Suggested Citation

  • Zhu, Qiansheng & Lang, Joseph B., 2022. "Test-inversion confidence intervals for estimands in contingency tables subject to equality constraints," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
  • Handle: RePEc:eee:csdana:v:169:y:2022:i:c:s0167947321002474
    DOI: 10.1016/j.csda.2021.107413
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947321002474
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2021.107413?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bartolucci F. & Forcina A. & Dardanoni V., 2001. "Positive Quadrant Dependence and Marginal Modeling in Two-Way Tables With Ordered Margins," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1497-1505, December.
    2. Alexander Shapiro & Jos Berge, 2002. "Statistical inference of minimum rank factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 67(1), pages 79-94, March.
    3. Joseph B. Lang, 2005. "Homogeneous Linear Predictor Models for Contingency Tables," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 121-134, March.
    4. Agresti, Alan & Yang, Ming-Chung, 1987. "An empirical investigation of some effects of sparseness in contingency tables," Computational Statistics & Data Analysis, Elsevier, vol. 5(1), pages 9-21.
    5. repec:cup:judgdm:v:10:y:2015:i:5:p:456-468 is not listed on IDEAS
    6. Alan Agresti & Euijung Ryu, 2010. "Pseudo-score confidence intervals for parameters in discrete statistical models," Biometrika, Biometrika Trust, vol. 97(1), pages 215-222.
    7. Lui, Kung-Jong, 2000. "Asymptotic conditional test procedures for relative difference under inverse sampling," Computational Statistics & Data Analysis, Elsevier, vol. 34(3), pages 335-343, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alan Agresti, 2014. "Two Bayesian/frequentist challenges for categorical data analyses," METRON, Springer;Sapienza Università di Roma, vol. 72(2), pages 125-132, August.
    2. Anastasiou, Andreas, 2017. "Bounds for the normal approximation of the maximum likelihood estimator from m-dependent random variables," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 171-181.
    3. Denter, Philipp & Sisak, Dana, 2015. "Do polls create momentum in political competition?," Journal of Public Economics, Elsevier, vol. 130(C), pages 1-14.
    4. Salgado Alfredo, 2018. "Incomplete Information and Costly Signaling in College Admissions," Working Papers 2018-23, Banco de México.
    5. Albrecht, James & Anderson, Axel & Vroman, Susan, 2010. "Search by committee," Journal of Economic Theory, Elsevier, vol. 145(4), pages 1386-1407, July.
    6. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2023. "Risk aggregation with FGM copulas," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 102-120.
    7. Simon Bruhn & Thomas Grebel & Lionel Nesta, 2023. "The fallacy in productivity decomposition," Journal of Evolutionary Economics, Springer, vol. 33(3), pages 797-835, July.
    8. Guo, Jianhua & Ma, Yanping & Shi, Ning-Zhong & Shing Lau, Tai, 2004. "Testing for homogeneity of relative differences under inverse sampling," Computational Statistics & Data Analysis, Elsevier, vol. 44(4), pages 613-624, January.
    9. Wim J. van der Linden, 2019. "Lord’s Equity Theorem Revisited," Journal of Educational and Behavioral Statistics, , vol. 44(4), pages 415-430, August.
    10. Simar, Léopold & Wilson, Paul, 2022. "Modern Tools for Evaluating the Performance of Health-Care Providers," LIDAM Discussion Papers ISBA 2022006, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Baey, Charlotte & Didier, Anne & Lemaire, Sébastien & Maupas, Fabienne & Cournède, Paul-Henry, 2013. "Modelling the interindividual variability of organogenesis in sugar beet populations using a hierarchical segmented model," Ecological Modelling, Elsevier, vol. 263(C), pages 56-63.
    12. Tasche, Dirk, 2013. "Bayesian estimation of probabilities of default for low default portfolios," Journal of Risk Management in Financial Institutions, Henry Stewart Publications, vol. 6(3), pages 302-326, July.
    13. Diers, Dorothea & Linde, Marc & Hahn, Lukas, 2016. "Addendum to ‘The multi-year non-life insurance risk in the additive reserving model’ [Insurance Math. Econom. 52(3) (2013) 590–598]: Quantification of multi-year non-life insurance risk in chain ladde," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 187-199.
    14. A. Forcina & M. Gnaldi & B. Bracalente, 2012. "A revised Brown and Payne model of voting behaviour applied to the 2009 elections in Italy," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(1), pages 109-119, March.
    15. Anastasiou, Andreas, 2017. "Bounds for the normal approximation of the maximum likelihood estimator from m -dependent random variables," LSE Research Online Documents on Economics 83635, London School of Economics and Political Science, LSE Library.
    16. Hirschberg, Joe & Lye, Jenny, 2017. "Inverting the indirect—The ellipse and the boomerang: Visualizing the confidence intervals of the structural coefficient from two-stage least squares," Journal of Econometrics, Elsevier, vol. 199(2), pages 173-183.
    17. Serguei Kaniovski & Alexander Zaigraev, 2018. "The probability of majority inversion in a two-stage voting system with three states," Theory and Decision, Springer, vol. 84(4), pages 525-546, June.
    18. Francesco Bartolucci & Antonio Forcina, 2005. "Likelihood inference on the underlying structure of IRT models," Psychometrika, Springer;The Psychometric Society, vol. 70(1), pages 31-43, March.
    19. Packham, Natalie & Woebbeking, Fabian, 2021. "Correlation scenarios and correlation stress testing," IRTG 1792 Discussion Papers 2021-012, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    20. Guillermo Martínez-Flórez & Roger Tovar-Falón & Carlos Barrera-Causil, 2022. "Inflated Unit-Birnbaum-Saunders Distribution," Mathematics, MDPI, vol. 10(4), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:169:y:2022:i:c:s0167947321002474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.