IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v36y2021i3d10.1007_s00180-021-01085-4.html
   My bibliography  Save this article

Nonparametric estimation of a distribution function from doubly truncated data under dependence

Author

Listed:
  • Carla Moreira

    (University of Minho)

  • Jacobo de Uña-Álvarez

    (SiDOR Research Group and CINBIO, University of Vigo)

  • Roel Braekers

    (Hasselt University)

Abstract

The NPMLE of a distribution function from doubly truncated data was introduced in the seminal paper of Efron and Petrosian (J Am Stat Assoc 94:824–834, 1999). The consistency of the NPMLE depends however on the assumption of independent truncation. In this work we introduce an extension of the Efron–Petrosian NPMLE when the variable of interest and the truncation variables may be dependent. The proposed estimator is constructed on the basis of a copula function which represents the dependence structure between the variable of interest and the truncation variables. Two different iterative algorithms to compute the estimator in practice are introduced, and their performance is explored through an intensive Monte Carlo simulation study. We illustrate the use of the estimators on two real data examples.

Suggested Citation

  • Carla Moreira & Jacobo de Uña-Álvarez & Roel Braekers, 2021. "Nonparametric estimation of a distribution function from doubly truncated data under dependence," Computational Statistics, Springer, vol. 36(3), pages 1693-1720, September.
  • Handle: RePEc:spr:compst:v:36:y:2021:i:3:d:10.1007_s00180-021-01085-4
    DOI: 10.1007/s00180-021-01085-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-021-01085-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-021-01085-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lajmi Lakhal Chaieb & Louis-Paul Rivest & Belkacem Abdous, 2006. "Estimating survival under a dependent truncation," Biometrika, Biometrika Trust, vol. 93(3), pages 655-669, September.
    2. Emura, Takeshi & Wang, Weijing, 2012. "Nonparametric maximum likelihood estimation for dependent truncation data based on copulas," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 171-188.
    3. Hong Zhu & Mei-Cheng Wang, 2014. "Nonparametric inference on bivariate survival data with interval sampling: association estimation and testing," Biometrika, Biometrika Trust, vol. 101(3), pages 519-533.
    4. Carla Moreira & Jacobo de Uña-Álvarez, 2010. "Bootstrapping the NPMLE for doubly truncated data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(5), pages 567-583.
    5. Pao-sheng Shen, 2010. "Nonparametric analysis of doubly truncated data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(5), pages 835-853, October.
    6. Austin, Matthew D. & Betensky, Rebecca A., 2014. "Eliminating bias due to censoring in Kendall’s tau estimators for quasi-independence of truncation and failure," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 16-26.
    7. Martin, Emily C. & Betensky, Rebecca A., 2005. "Testing Quasi-Independence of Failure and Truncation Times via Conditional Kendall's Tau," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 484-492, June.
    8. T. Emura & K. Murotani, 2015. "An algorithm for estimating survival under a copula-based dependent truncation model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 734-751, December.
    9. Hong Zhu & Mei-Cheng Wang, 2012. "Analysing bivariate survival data with interval sampling and application to cancer epidemiology," Biometrika, Biometrika Trust, vol. 99(2), pages 345-361.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Pao-sheng & Hsu, Huichen, 2020. "Conditional maximum likelihood estimation for semiparametric transformation models with doubly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    2. Lior Rennert & Sharon X. Xie, 2022. "Cox regression model under dependent truncation," Biometrics, The International Biometric Society, vol. 78(2), pages 460-473, June.
    3. Jing Qian & Sy Han Chiou & Rebecca A. Betensky, 2022. "Transformation model based regression with dependently truncated and independently censored data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 395-416, March.
    4. Chiou, Sy Han & Qian, Jing & Mormino, Elizabeth & Betensky, Rebecca A., 2018. "Permutation tests for general dependent truncation," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 308-324.
    5. Jing Qian & Rebecca A. Betensky, 2023. "Nonparametric bounds for the survivor function under general dependent truncation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 327-357, March.
    6. Takeshi Emura & Chi-Hung Pan, 2020. "Parametric likelihood inference and goodness-of-fit for dependently left-truncated data, a copula-based approach," Statistical Papers, Springer, vol. 61(1), pages 479-501, February.
    7. Bella Vakulenko‐Lagun & Jing Qian & Sy Han Chiou & Nancy Wang & Rebecca A. Betensky, 2022. "Nonparametric estimation of the survival distribution under covariate‐induced dependent truncation," Biometrics, The International Biometric Society, vol. 78(4), pages 1390-1401, December.
    8. T. Emura & K. Murotani, 2015. "An algorithm for estimating survival under a copula-based dependent truncation model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 734-751, December.
    9. Pao-Sheng Shen, 2011. "Testing quasi-independence for doubly truncated data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(3), pages 753-761.
    10. Takeshi Emura & Ya-Hsuan Hu & Yoshihiko Konno, 2017. "Asymptotic inference for maximum likelihood estimators under the special exponential family with double-truncation," Statistical Papers, Springer, vol. 58(3), pages 877-909, September.
    11. Shih, Jia-Han & Emura, Takeshi, 2021. "On the copula correlation ratio and its generalization," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    12. Moreira, C. & de Uña-Álvarez, J. & Meira-Machado, L., 2016. "Nonparametric regression with doubly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 294-307.
    13. Austin, Matthew D. & Betensky, Rebecca A., 2014. "Eliminating bias due to censoring in Kendall’s tau estimators for quasi-independence of truncation and failure," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 16-26.
    14. Achim Dörre & Chung-Yan Huang & Yi-Kuan Tseng & Takeshi Emura, 2021. "Likelihood-based analysis of doubly-truncated data under the location-scale and AFT model," Computational Statistics, Springer, vol. 36(1), pages 375-408, March.
    15. Kavita Sardana, 2021. "Double truncation in choice-based sample: An application of on-site survey sample," Economics Bulletin, AccessEcon, vol. 41(2), pages 781-787.
    16. Pao-Sheng Shen, 2013. "A class of rank-based tests for doubly-truncated data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 83-102, March.
    17. Emura, Takeshi & Hsu, Jiun-Huang, 2020. "Estimation of the Mann–Whitney effect in the two-sample problem under dependent censoring," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    18. Stephan M. Bischofberger, 2020. "In-Sample Hazard Forecasting Based on Survival Models with Operational Time," Risks, MDPI, vol. 8(1), pages 1-17, January.
    19. Emura, Takeshi & Konno, Yoshihiko, 2012. "A goodness-of-fit test for parametric models based on dependently truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2237-2250.
    20. Ying Wu & Richard J. Cook, 2018. "Variable selection and prediction in biased samples with censored outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 72-93, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:36:y:2021:i:3:d:10.1007_s00180-021-01085-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.