IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v29y2014i5p1365-1379.html
   My bibliography  Save this article

Goodness-of-fit tests for a semiparametric model under random double truncation

Author

Listed:
  • Carla Moreira
  • Jacobo Uña-Álvarez
  • Ingrid Keilegom

Abstract

Doubly truncated data are commonly encountered in areas like medicine, astronomy, economics, among others. A semiparametric estimator of a doubly truncated random variable may be computed based on a parametric specification of the distribution function of the truncation times. This semiparametric estimator outperforms the nonparametric maximum likelihood estimator when the parametric information is correct, but might behave badly when the assumed parametric model is far off. In this paper we introduce several goodness-of-fit tests for the parametric model. The proposed tests are investigated through simulations. For illustration purposes, the tests are also applied to data on the induction time to acquired immune deficiency syndrome for blood transfusion patients. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Carla Moreira & Jacobo Uña-Álvarez & Ingrid Keilegom, 2014. "Goodness-of-fit tests for a semiparametric model under random double truncation," Computational Statistics, Springer, vol. 29(5), pages 1365-1379, October.
  • Handle: RePEc:spr:compst:v:29:y:2014:i:5:p:1365-1379
    DOI: 10.1007/s00180-014-0496-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-014-0496-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-014-0496-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moreira, Carla & de Uña-Álvarez, Jacobo & Crujeiras, Rosa M., 2010. "DTDA: An R Package to Analyze Randomly Truncated Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 37(i07).
    2. Zhou, Yong & Yip, Paul S. F., 1999. "A Strong Representation of the Product-Limit Estimator for Left Truncated and Right Censored Data," Journal of Multivariate Analysis, Elsevier, vol. 69(2), pages 261-280, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pao-sheng Shen & Yi Liu, 2019. "Pseudo maximum likelihood estimation for the Cox model with doubly truncated data," Statistical Papers, Springer, vol. 60(4), pages 1207-1224, August.
    2. Ya-Hsuan Hu & Takeshi Emura, 2015. "Maximum likelihood estimation for a special exponential family under random double-truncation," Computational Statistics, Springer, vol. 30(4), pages 1199-1229, December.
    3. Takeshi Emura & Ya-Hsuan Hu & Yoshihiko Konno, 2017. "Asymptotic inference for maximum likelihood estimators under the special exponential family with double-truncation," Statistical Papers, Springer, vol. 58(3), pages 877-909, September.
    4. Achim Dörre & Chung-Yan Huang & Yi-Kuan Tseng & Takeshi Emura, 2021. "Likelihood-based analysis of doubly-truncated data under the location-scale and AFT model," Computational Statistics, Springer, vol. 36(1), pages 375-408, March.
    5. Lior Rennert & Sharon X. Xie, 2018. "Cox regression model with doubly truncated data," Biometrics, The International Biometric Society, vol. 74(2), pages 725-733, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moreira, Carla & de Una-Alvarez, Jacobo & Van Keilegom, Ingrid, 2012. "Goodness-of-fit Tests for a Semiparametric Model under Random Double Truncation," LIDAM Discussion Papers ISBA 2012024, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Pao-sheng Shen & Yi Liu, 2019. "Pseudo maximum likelihood estimation for the Cox model with doubly truncated data," Statistical Papers, Springer, vol. 60(4), pages 1207-1224, August.
    3. Goele Massonnet & Paul Janssen & Tomasz Burzykowski, 2008. "Fitting Conditional Survival Models to Meta‐Analytic Data by Using a Transformation Toward Mixed‐Effects Models," Biometrics, The International Biometric Society, vol. 64(3), pages 834-842, September.
    4. Elisa–María Molanes-López & Ricardo Cao, 2008. "Relative density estimation for left truncated and right censored data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(8), pages 693-720.
    5. Moreira, C. & de Uña-Álvarez, J. & Meira-Machado, L., 2016. "Nonparametric regression with doubly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 294-307.
    6. Xun, Li & Shao, Li & Zhou, Yong, 2017. "Efficiency of estimators for quantile differences with left truncated and right censored data," Statistics & Probability Letters, Elsevier, vol. 121(C), pages 29-36.
    7. Micha Mandel & Jacobo de Uña†à lvarez & David K. Simon & Rebecca A. Betensky, 2018. "Inverse probability weighted Cox regression for doubly truncated data," Biometrics, The International Biometric Society, vol. 74(2), pages 481-487, June.
    8. Moreira, C. & Van Keilegom, I., 2013. "Bandwidth selection for kernel density estimation with doubly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 107-123.
    9. Jacobo de Uña‐Álvarez & Micha Mandel, 2018. "Nonparametric estimation of transition probabilities for a general progressive multi‐state model under cross‐sectional sampling," Biometrics, The International Biometric Society, vol. 74(4), pages 1203-1212, December.
    10. Carla Moreira & Jacobo de Uña-Álvarez, 2010. "Bootstrapping the NPMLE for doubly truncated data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(5), pages 567-583.
    11. Chengbo Li & Yong Zhou, 2021. "The estimation for the general additive–multiplicative hazard model using the length-biased survival data," Statistical Papers, Springer, vol. 62(1), pages 53-74, February.
    12. Ricardo Cao & Paul Janssen & Noël Veraverbeke, 2005. "Relative hazard rate estimation for right censored and left truncated data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 14(1), pages 257-280, June.
    13. Gneyou, Kossi Essona, 2014. "A strong linear representation for the maximum conditional hazard rate estimator in survival analysis," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 10-18.
    14. Zhao, Mu & Bai, Fangfang & Zhou, Yong, 2011. "Relative deficiency of quantile estimators for left truncated and right censored data," Statistics & Probability Letters, Elsevier, vol. 81(11), pages 1725-1732, November.
    15. Suparna Biswas & Rituparna Sen, 2024. "Estimation of Spectral Risk Measure for Left Truncated and Right Censored Data," Papers 2402.14322, arXiv.org.
    16. Moreira , Carla & Van Keilegom, Ingrid, 2012. "Bandwidth Selection for Kernel Density Estimation with Doubly Truncated Data," LIDAM Discussion Papers ISBA 2012006, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Yousri Slaoui, 2018. "Data-Driven Bandwidth Selection for Recursive Kernel Density Estimators Under Double Truncation," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 341-368, November.
    18. Jacobo Uña-Álvarez, 2002. "Product-limit estimation for length-biased censored data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 11(1), pages 109-125, June.
    19. Shen, Pao-sheng & Hsu, Huichen, 2020. "Conditional maximum likelihood estimation for semiparametric transformation models with doubly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    20. Sun, Liuquan, 2006. "The strong law under a semiparametric model for truncated and censored data," Statistics & Probability Letters, Elsevier, vol. 76(14), pages 1550-1558, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:29:y:2014:i:5:p:1365-1379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.