IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v147y2018i1d10.1007_s10584-017-2126-6.html
   My bibliography  Save this article

Nitrogen pollution: a key building block for addressing climate change

Author

Listed:
  • David R. Kanter

    (New York University)

Abstract

The current national commitments under the Paris Climate Agreement fall short of what is needed to stay below a 2 °C increase in global average temperature. One approach that has been proposed to close this ambition gap is the building blocks strategy, which aims to encourage initiatives focused on non-climate actions that can deliver a climate benefit. A key option under this framework is reducing global nitrogen pollution. Nitrogen pollution—driven largely by the inefficient use of synthetic fertilizer and manure—is one of the most important environmental issues of the twenty-first century, not least because of its climate impacts. Ambitiously mitigating nitrogen pollution could avoid greenhouse gas emissions equivalent to 5–10% of the remaining allowable emissions consistent with the 2 °C target. However, the climate benefits would be a minor component of the overall environmental benefits of reducing nitrogen pollution, which would come mainly from avoided water and air pollution. The fact that these benefits would accrue mostly at local scales is especially important for countries like the United States, marked by a shift toward “economic nationalism.” In these countries, the most politically viable climate actions will likely be ones that produce local benefits as great, if not greater, than those achieved internationally. This is also likely to be true in countries like China, where local nitrogen-related issues such as air and water pollution remain major national priorities. Nevertheless, there are several challenges that could stand in the way of improved nitrogen management being a successful building block: integrated nitrogen management solutions that reduce the risk of pollution swapping need to be developed, the policy challenges related to changing and monitoring farmer behavior need to be addressed, and nitrogen’s role as an essential agricultural input needs to be respected. A better understanding of these challenges could also help policy-makers develop viable climate mitigation strategies across the entire agricultural sector.

Suggested Citation

  • David R. Kanter, 2018. "Nitrogen pollution: a key building block for addressing climate change," Climatic Change, Springer, vol. 147(1), pages 11-21, March.
  • Handle: RePEc:spr:climat:v:147:y:2018:i:1:d:10.1007_s10584-017-2126-6
    DOI: 10.1007/s10584-017-2126-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-017-2126-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-017-2126-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buzby, Jean C. & Wells, Hodan Farah & Bentley, Jeanine, 2013. "ERS’s Food Loss Data Help Inform the Food Waste Discussion," Amber Waves:The Economics of Food, Farming, Natural Resources, and Rural America, United States Department of Agriculture, Economic Research Service, issue 05, pages 1-1, June.
    2. Aunan, Kristin & Fang, Jinghua & Vennemo, Haakon & Oye, Kenneth & Seip, Hans M., 2004. "Co-benefits of climate policy--lessons learned from a study in Shanxi, China," Energy Policy, Elsevier, vol. 32(4), pages 567-581, March.
    3. Xin Zhang & Eric A. Davidson & Denise L. Mauzerall & Timothy D. Searchinger & Patrice Dumas & Ye Shen, 2015. "Managing nitrogen for sustainable development," Nature, Nature, vol. 528(7580), pages 51-59, December.
    4. Richard B. Stewart & Michael Oppenheimer & Bryce Rudyk, 2017. "Building blocks: a strategy for near-term action within the new global climate framework," Climatic Change, Springer, vol. 144(1), pages 1-13, September.
    5. J. Lelieveld & J. S. Evans & M. Fnais & D. Giannadaki & A. Pozzer, 2015. "The contribution of outdoor air pollution sources to premature mortality on a global scale," Nature, Nature, vol. 525(7569), pages 367-371, September.
    6. Joeri Rogelj & Michiel Schaeffer & Pierre Friedlingstein & Nathan P. Gillett & Detlef P. van Vuuren & Keywan Riahi & Myles Allen & Reto Knutti, 2016. "Differences between carbon budget estimates unravelled," Nature Climate Change, Nature, vol. 6(3), pages 245-252, March.
    7. Aillery, Marcel P. & Gollehon, Noel R. & Johansson, Robert C. & Kaplan, Jonathan D. & Key, Nigel D. & Ribaudo, Marc, 2005. "Managing Manure To Improve Air And Water Quality," Economic Research Report 33593, United States Department of Agriculture, Economic Research Service.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carl Latkin & Lauren Dayton & Catelyn Coyle & Grace Yi & Da-In Lee & Abigail Winiker, 2021. "The Relationship between Social Norms, Avoidance, Future Orientation, and Willingness to Engage in Climate Change Advocacy Communications," IJERPH, MDPI, vol. 18(24), pages 1-14, December.
    2. repec:ags:aaea22:337098 is not listed on IDEAS
    3. Yong Min & Hong Li & Ying Ge & Jie Chang, 2024. "Metabolic Network Analysis Reveals Human Impact on Urban Nitrogen Cycles," Land, MDPI, vol. 13(8), pages 1-12, August.
    4. Zaveri,Esha Dilip & Russ,Jason Daniel & Desbureaux,Sebastien Gael & Damania,Richard & Rodella,Aude-Sophie & Ribeiro Paiva De Souza,Giovanna, 2020. "The Nitrogen Legacy : The Long-Term Effects of Water Pollution on Human Capital," Policy Research Working Paper Series 9143, The World Bank.
    5. Odina B. Dela Rosa & Annaliza L. Magno & Dinah S. Mutia, 2023. "Stewardship: The Identity of the Catholic School in the 21st Century," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 7(8), pages 1166-1175, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    2. Zhang, Hui & Zhang, Bing, 2020. "The unintended impact of carbon trading of China's power sector," Energy Policy, Elsevier, vol. 147(C).
    3. Gedikoglu, Haluk & McCann, Laura M.J. & Artz, Georgeanne M., 2011. "Off-Farm Employment Effects on Adoption of Nutrient Management Practices," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 40(2), pages 1-14, August.
    4. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    5. Al-Ghandoor, A. & Jaber, J.O. & Al-Hinti, I. & Mansour, I.M., 2009. "Residential past and future energy consumption: Potential savings and environmental impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1262-1274, August.
    6. Ellen Banzhaf & Sally Anderson & Gwendoline Grandin & Richard Hardiman & Anne Jensen & Laurence Jones & Julius Knopp & Gregor Levin & Duncan Russel & Wanben Wu & Jun Yang & Marianne Zandersen, 2022. "Urban-Rural Dependencies and Opportunities to Design Nature-Based Solutions for Resilience in Europe and China," Land, MDPI, vol. 11(4), pages 1-25, March.
    7. Rogers Kanee & Precious Ede & Omosivie Maduka & Golden Owhonda & Eric Aigbogun & Khalaf F. Alsharif & Ahmed H. Qasem & Shadi S. Alkhayyat & Gaber El-Saber Batiha, 2021. "Polycyclic Aromatic Hydrocarbon Levels in Wistar Rats Exposed to Ambient Air of Port Harcourt, Nigeria: An Indicator for Tissue Toxicity," IJERPH, MDPI, vol. 18(11), pages 1-21, May.
    8. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    9. Stefani Kulebanova & Jana Prodanova & Aleksandra Dedinec & Trifce Sandev & Desheng Wu & Ljupco Kocarev, 2024. "Media Sentiment on Air Pollution: Seasonal Trends in Relation to PM10 Levels," Sustainability, MDPI, vol. 16(15), pages 1-20, July.
    10. Kejun Jiang & Sha Chen & Chenmin He & Jia Liu & Sun Kuo & Li Hong & Songli Zhu & Xiang Pianpian, 2019. "Energy transition, CO2 mitigation, and air pollutant emission reduction: scenario analysis from IPAC model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1277-1293, December.
    11. Moroni, Stefano & Antoniucci, Valentina & Bisello, Adriano, 2016. "Energy sprawl, land taking and distributed generation: towards a multi-layered density," Energy Policy, Elsevier, vol. 98(C), pages 266-273.
    12. Xin Nie & Jianxian Wu & Han Wang & Weijuan Li & Chengdao Huang & Lihua Li, 2022. "Contributing to carbon peak: Estimating the causal impact of eco‐industrial parks on low‐carbon development in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1578-1593, August.
    13. Sowmya Malamardi & Katrina A. Lambert & Attahalli Shivanarayanaprasad Praveena & Mahesh Padukudru Anand & Bircan Erbas, 2022. "Time Trends of Greenspaces, Air Pollution, and Asthma Prevalence among Children and Adolescents in India," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    14. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    15. Liu, Haoming & Salvo, Alberto, 2017. "Severe Air Pollution and School Absences: Longitudinal Data on Expatriates in North China," IZA Discussion Papers 11134, Institute of Labor Economics (IZA).
    16. Otavio Ananias Pereira da Silva & Dayane Bortoloto da Silva & Marcelo Carvalho Minhoto Teixeira-Filho & Tays Batista Silva & Cid Naudi Silva Campos & Fabio Henrique Rojo Baio & Gileno Brito de Azevedo, 2023. "Macro- and Micronutrient Contents and Their Relationship with Growth in Six Eucalyptus Species," Sustainability, MDPI, vol. 15(22), pages 1-12, November.
    17. Li, Shanjun & Liu, Yanyan & Purevjav, Avralt-Od & Yang, Lin, 2019. "Does subway expansion improve air quality?," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 213-235.
    18. K. K. Shukla & Raju Attada & Aman W. Khan & Prashant Kumar, 2022. "Evaluation of extreme dust storm over the northwest Indo-Gangetic plain using WRF-Chem model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1887-1910, February.
    19. Matthias Ruth, 2018. "Regional science in a resource-constrained world," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 61(2), pages 229-236, September.
    20. J. West & Arlene Fiore & Larry Horowitz, 2012. "Scenarios of methane emission reductions to 2030: abatement costs and co-benefits to ozone air quality and human mortality," Climatic Change, Springer, vol. 114(3), pages 441-461, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:147:y:2018:i:1:d:10.1007_s10584-017-2126-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.