IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i8p1199-d1449835.html
   My bibliography  Save this article

Metabolic Network Analysis Reveals Human Impact on Urban Nitrogen Cycles

Author

Listed:
  • Yong Min

    (Center for Computational Communication Research, Beijing Normal University, Zhuhai 519087, China
    School of Journalism and Communication, Beijing Normal University, Beijing 100875, China)

  • Hong Li

    (Faculty of Architecture and Urban Planning, Chongqing University, Chongqing 400045, China)

  • Ying Ge

    (College of Life Sciences, Zhejiang University, Hangzhou 310058, China)

  • Jie Chang

    (College of Life Sciences, Zhejiang University, Hangzhou 310058, China)

Abstract

Human interactions have led to the emergence of a higher complexity of urban metabolic networks; hence, traditional natural- or agriculture-oriented biogeochemical models might not be transferred well to urban environments. Increasingly serious environmental problems require the development of new concepts and models. Here, we propose a basic paradigm for urban–rural complex nitrogen (N) metabolic network reconstruction (NMNR) by introducing new concepts and methodologies from systems biology at the molecular scale, analyzing both local and global structural properties and exploring optimization and regulation methods. Using the Great Hangzhou Areas System (GHA) as a case study, we revealed that pathway fluxes follow a power law distribution, which indicates that human-dominated pathways constitute the principal part of the functions of the whole network. However, only 1.16% of the effective cycling pathways and an average hamming distance of only 5.23 between the main pathways indicate that the network lacks diverse pathways and feedback loops, which could lead to low robustness. Furthermore, more than half of the N fluxes did not pass through core metabolism, causing waste and pollution. We also provided strategies to design network structures and regulate system function: improving robustness and reducing pollution by referring to the characteristics of biochemical metabolic networks (e.g., the bow-tie structure). This method can be used to replace the trial-and-error method in system regulation and design. By decomposing the GHA N metabolic network into 4398 metabolic pathways and the corresponding fluxes with a power law distribution, NMNR helps us quantify the vulnerability in the current urban nitrogen cycle. The basic ideas and methodology in NMNR can be applied to coupled human and natural systems to advance global sustainable development studies, and they can also extend systems biology from the molecule to complex ecosystems and lead to the development of multi-scale unified theory in systems biology.

Suggested Citation

  • Yong Min & Hong Li & Ying Ge & Jie Chang, 2024. "Metabolic Network Analysis Reveals Human Impact on Urban Nitrogen Cycles," Land, MDPI, vol. 13(8), pages 1-12, August.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:8:p:1199-:d:1449835
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/8/1199/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/8/1199/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jörg Stelling & Steffen Klamt & Katja Bettenbrock & Stefan Schuster & Ernst Dieter Gilles, 2002. "Metabolic network structure determines key aspects of functionality and regulation," Nature, Nature, vol. 420(6912), pages 190-193, November.
    2. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    3. David R. Kanter, 2018. "Nitrogen pollution: a key building block for addressing climate change," Climatic Change, Springer, vol. 147(1), pages 11-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisa Morri & Riccardo Santolini, 2021. "Ecosystem Services Valuation for the Sustainable Land Use Management by Nature-Based Solution (NbS) in the Common Agricultural Policy Actions: A Case Study on the Foglia River Basin (Marche Region, It," Land, MDPI, vol. 11(1), pages 1-23, December.
    2. Liu, Duan & Tang, Runcheng & Xie, Jun & Tian, Jingjing & Shi, Rui & Zhang, Kai, 2020. "Valuation of ecosystem services of rice–fish coculture systems in Ruyuan County, China," Ecosystem Services, Elsevier, vol. 41(C).
    3. Gao, Qiang & Liang, Zhentao & Wang, Ping & Hou, Jingrui & Chen, Xiuxiu & Liu, Manman, 2021. "Potential index: Revealing the future impact of research topics based on current knowledge networks," Journal of Informetrics, Elsevier, vol. 15(3).
    4. Shen Yuan & Shaobing Peng, 2017. "Exploring the Trends in Nitrogen Input and Nitrogen Use Efficiency for Agricultural Sustainability," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    5. Katarina Arvidsson Segerkvist & Helena Hansson & Ulf Sonesson & Stefan Gunnarsson, 2021. "A Systematic Mapping of Current Literature on Sustainability at Farm-Level in Beef and Lamb Meat Production," Sustainability, MDPI, vol. 13(5), pages 1-14, February.
    6. Vainio, Annukka & Tienhaara, Annika & Haltia, Emmi & Hyvönen, Terho & Pyysiäinen, Jarkko & Pouta, Eija, 2021. "The legitimacy of result-oriented and action-oriented agri-environmental schemes: A comparison of farmers’ and citizens’ perceptions," Land Use Policy, Elsevier, vol. 107(C).
    7. Hualin Xie & Yingqian Huang & Qianru Chen & Yanwei Zhang & Qing Wu, 2019. "Prospects for Agricultural Sustainable Intensification: A Review of Research," Land, MDPI, vol. 8(11), pages 1-27, October.
    8. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    9. Aude Ridier & Caroline Roussy & Karim Chaib, 2021. "Adoption of crop diversification by specialized grain farmers in south-western France: evidence from a choice-modelling experiment," Review of Agricultural, Food and Environmental Studies, Springer, vol. 102(3), pages 265-283, September.
    10. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    11. Diriba Shiferaw G., 2017. "Water-Nutrients Interaction: Exploring the Effects of Water as a Central Role for Availability & Use Efficiency of Nutrients by Shallow Rooted Vegetable Crops - A Review," Journal of Agriculture and Crops, Academic Research Publishing Group, vol. 3(10), pages 78-93, 10-2017.
    12. Sheng Gong & Jason.S. Bergtold & Elizabeth Yeager, 2021. "Assessing the joint adoption and complementarity between in-field conservation practices of Kansas farmers," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 9(1), pages 1-24, December.
    13. Seufert, Verena & Ramankutty, Navin & Mayerhofer, Tabea, 2017. "What is this thing called organic? – How organic farming is codified in regulations," Food Policy, Elsevier, vol. 68(C), pages 10-20.
    14. Jónsson, Jón Örvar G. & Davíðsdóttir, Brynhildur & Nikolaidis, Nikolaos P. & Giannakis, Georgios V., 2019. "Tools for Sustainable Soil Management: Soil Ecosystem Services, EROI and Economic Analysis," Ecological Economics, Elsevier, vol. 157(C), pages 109-119.
    15. Kataki, Sampriti & West, Helen & Clarke, Michèle & Baruah, D.C., 2016. "Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 142-156.
    16. Ashley E. Larsen & Steven D. Gaines & Olivier Deschênes, 2017. "Agricultural pesticide use and adverse birth outcomes in the San Joaquin Valley of California," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    17. Carpentier, A. & Reboud, X., 2018. "Why farmers consider pesticides the ultimate in crop protection: economic and behavioral insights," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277528, International Association of Agricultural Economists.
    18. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    19. Alexander D. Chapman & Stephen E. Darby & Hoàng M. Hồng & Emma L. Tompkins & Tri P. D. Van, 2016. "Adaptation and development trade-offs: fluvial sediment deposition and the sustainability of rice-cropping in An Giang Province, Mekong Delta," Climatic Change, Springer, vol. 137(3), pages 593-608, August.
    20. Irene Otero-Muras & Pencho Yordanov & Joerg Stelling, 2017. "Chemical Reaction Network Theory elucidates sources of multistability in interferon signaling," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-28, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:8:p:1199-:d:1449835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.