IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i22p15771-d1276822.html
   My bibliography  Save this article

Macro- and Micronutrient Contents and Their Relationship with Growth in Six Eucalyptus Species

Author

Listed:
  • Otavio Ananias Pereira da Silva

    (Graduate Program in Agronomy, Faculty of Engineering, Universidade Estadual Paulista, Ilha Solteira 15385-000, São Paulo, Brazil)

  • Dayane Bortoloto da Silva

    (Graduate Program in Agronomy, Faculty of Engineering, Universidade Estadual Paulista, Ilha Solteira 15385-000, São Paulo, Brazil)

  • Marcelo Carvalho Minhoto Teixeira-Filho

    (Graduate Program in Agronomy, Faculty of Engineering, Universidade Estadual Paulista, Ilha Solteira 15385-000, São Paulo, Brazil)

  • Tays Batista Silva

    (Universidade Federal de Mato Grosso do Sul, Chapadão do Sul 79560-000, Mato Grosso do Sul, Brazil)

  • Cid Naudi Silva Campos

    (Universidade Federal de Mato Grosso do Sul, Chapadão do Sul 79560-000, Mato Grosso do Sul, Brazil)

  • Fabio Henrique Rojo Baio

    (Universidade Federal de Mato Grosso do Sul, Chapadão do Sul 79560-000, Mato Grosso do Sul, Brazil)

  • Gileno Brito de Azevedo

    (Universidade Federal de Mato Grosso do Sul, Chapadão do Sul 79560-000, Mato Grosso do Sul, Brazil)

  • Gláucia Amorim Faria

    (Graduate Program in Agronomy, Faculty of Engineering, Universidade Estadual Paulista, Ilha Solteira 15385-000, São Paulo, Brazil)

  • Larissa Pereira Ribeiro Teodoro

    (Universidade Federal de Mato Grosso do Sul, Chapadão do Sul 79560-000, Mato Grosso do Sul, Brazil)

  • Paulo Eduardo Teodoro

    (Universidade Federal de Mato Grosso do Sul, Chapadão do Sul 79560-000, Mato Grosso do Sul, Brazil)

Abstract

Knowing nutrient allocation dynamics in the tissues and the characteristics related to growth in different forest species is crucial to fertilization management and selecting better species for specific environments, ensuring greater fertilization efficiency and consequent sustainability in the forestry sector through the rational use of fertilizers. The objectives of this study were (i) to evaluate the content of macro- and micronutrients in different tissues of eucalyptus species and (ii) to relate them with their growth. The treatments were composed of six eucalyptus species ( Eucalyptus camaldulensis Dehnh., Corymbia citriodora Hook., E. saligna Sm., E. grandis W. Hill ex Maiden, E. urograndis , and E. urophylla S. T. Blake). Macro- (nitrogen, phosphorus, potassium, calcium, magnesium, and sulfur) and micronutrient (boron, copper, iron, manganese, and zinc) contents were determined in the leaves, bark, and sapwood. To study the functional patterns in macro- and micronutrient contents, Canonical Variable Analysis (CVA) was performed. The first two canonical variables in nutrient content of leaves, bark, and sapwood and the growth variables of eucalyptus species accumulated values greater than 80% of variance. The species E. grandis and E. urograndis showed the highest means for volume and total height but showed no differences regarding the concentration of major elements in the tissues, except the iron content in the bark, which was higher compared to other species. CVA proved to be an excellent tool for understanding, identifying, and classifying the strategies of Eucalyptus sp. regarding the content of nutrients in the shoot biomass tissues and may support genetic improvement programs aiming at identifying potential species. Future research involving the use of remotely piloted aircraft and remote sensors could be a strategy to monitor nutrient contents in different parts of trees throughout the cycle of different eucalyptus species.

Suggested Citation

  • Otavio Ananias Pereira da Silva & Dayane Bortoloto da Silva & Marcelo Carvalho Minhoto Teixeira-Filho & Tays Batista Silva & Cid Naudi Silva Campos & Fabio Henrique Rojo Baio & Gileno Brito de Azevedo, 2023. "Macro- and Micronutrient Contents and Their Relationship with Growth in Six Eucalyptus Species," Sustainability, MDPI, vol. 15(22), pages 1-12, November.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:15771-:d:1276822
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/22/15771/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/22/15771/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tao Zhang & Ülo Niinemets & Justin Sheffield & Jeremy W. Lichstein, 2018. "Shifts in tree functional composition amplify the response of forest biomass to climate," Nature, Nature, vol. 556(7699), pages 99-102, April.
    2. Xin Zhang & Eric A. Davidson & Denise L. Mauzerall & Timothy D. Searchinger & Patrice Dumas & Ye Shen, 2015. "Managing nitrogen for sustainable development," Nature, Nature, vol. 528(7580), pages 51-59, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guoyong Yan & Chunnan Fan & Junqiang Zheng & Guancheng Liu & Jinghua Yu & Zhongling Guo & Wei Cao & Lihua Wang & Wenjie Wang & Qingfan Meng & Junhui Zhang & Yan Li & Jinping Zheng & Xiaoyang Cui & Xia, 2024. "Forest carbon stocks increase with higher dominance of ectomycorrhizal trees in high latitude forests," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    3. Xin Nie & Jianxian Wu & Han Wang & Weijuan Li & Chengdao Huang & Lihua Li, 2022. "Contributing to carbon peak: Estimating the causal impact of eco‐industrial parks on low‐carbon development in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1578-1593, August.
    4. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    5. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    6. Jiamin Liu & Xiaoyu Ma & Bin Zhao & Qi Cui & Sisi Zhang & Jiaoning Zhang, 2023. "Mandatory Environmental Regulation, Enterprise Labor Demand and Green Innovation Transformation: A Quasi-Experiment from China’s New Environmental Protection Law," Sustainability, MDPI, vol. 15(14), pages 1-31, July.
    7. David I. Stern, 2017. "The environmental Kuznets curve after 25 years," Journal of Bioeconomics, Springer, vol. 19(1), pages 7-28, April.
    8. Anna Lungarska & Thierry Brunelle & Raja Chakir & Pierre‐Alain Jayet & Rémi Prudhomme & Stéphane De Cara & Jean‐Christophe Bureau, 2023. "Halving mineral nitrogen use in European agriculture: Insights from multi‐scale land‐use models," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 45(3), pages 1529-1550, September.
    9. Jiuliang Xu & Liangquan Wu & Bingxin Tong & Jiaxu Yin & Zican Huang & Wei Li & Xuexian Li, 2021. "Magnesium Supplementation Alters Leaf Metabolic Pathways for Higher Flavor Quality of Oolong Tea," Agriculture, MDPI, vol. 11(2), pages 1-12, February.
    10. Jun Li & Jiali Xing & Rui Ding & Wenjiao Shi & Xiaoli Shi & Xiaoqing Wang, 2023. "Systematic Evaluation of Nitrogen Application in the Production of Multiple Crops and Its Environmental Impacts in Fujian Province, China," Agriculture, MDPI, vol. 13(3), pages 1-17, March.
    11. Qian Wu & Chencheng Dai & Fanxu Meng & Yan Jiao & Zhichuan J. Xu, 2024. "Potential and electric double-layer effect in electrocatalytic urea synthesis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Purushothaman Chirakkuzhyil Abhilash, 2021. "Restoring the Unrestored: Strategies for Restoring Global Land during the UN Decade on Ecosystem Restoration (UN-DER)," Land, MDPI, vol. 10(2), pages 1-19, February.
    13. Madhu Khanna & Shady S. Atallah & Saurajyoti Kar & Bijay Sharma & Linghui Wu & Chengzheng Yu & Girish Chowdhary & Chinmay Soman & Kaiyu Guan, 2022. "Digital transformation for a sustainable agriculture in the United States: Opportunities and challenges," Agricultural Economics, International Association of Agricultural Economists, vol. 53(6), pages 924-937, November.
    14. Wang, Mengru & Ma, Lin & Strokal, Maryna & Chu, Yanan & Kroeze, Carolien, 2018. "Exploring nutrient management options to increase nitrogen and phosphorus use efficiencies in food production of China," Agricultural Systems, Elsevier, vol. 163(C), pages 58-72.
    15. Luncheng You & Gerard H. Ros & Yongliang Chen & Qi Shao & Madaline D. Young & Fusuo Zhang & Wim de Vries, 2023. "Global mean nitrogen recovery efficiency in croplands can be enhanced by optimal nutrient, crop and soil management practices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Zhuang, Minghao & Liu, Yize & Yang, Yi & Zhang, Qingsong & Ying, Hao & Yin, Yulong & Cui, Zhenling, 2022. "The sustainability of staple crops in China can be substantially improved through localized strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    17. Luis U. Castruita-Esparza & Raúl Narváez-Flores & Mélida Gutiérrez & Aldo S. Mojica-Guerrero & Gerónimo Quiñones-Barraza & Javier Hernández-Salas, 2024. "Structure and Carbon Capture of a Temperate Mixed Forest across Altitudinal Gradients in Northern Mexico," Land, MDPI, vol. 13(4), pages 1-17, April.
    18. Yongqiang Zhang & Hao Sun & Maosheng Ge & Hang Zhao & Yifan Hu & Changyue Cui & Zhibin Wu, 2023. "Difference in Energy Input and Output in Agricultural Production under Surface Irrigation and Water-Saving Irrigation: A Case Study of Kiwi Fruit in Shaanxi," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    19. Maity, Shrabanti & Sinha, Anup & Kumar Rath, Mithun & Rummana Barlaskar, Ummey, 2023. "Resource Use Efficiency and Cleaner Agricultural Production: An Application of Technical Inefficiency Effects Model for Paddy Producing Zones of West Bengal," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 15(2), June.
    20. Xiao, Xuechen & Zang, Hecang & Liu, Yang & Zhang, Zhen & Liu, Ying & Ejaz, Irsa & Du, Chenghang & Wang, Zhimin & Sun, Zhencai & Zhang, Yinghua, 2023. "Promoting winter wheat sustainable intensification by higher nitrogen distribution in top second to fourth leaves under water-restricted condition in North China Plain," Agricultural Water Management, Elsevier, vol. 289(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:15771-:d:1276822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.