IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v301y2021i1d10.1007_s10479-020-03914-z.html
   My bibliography  Save this article

The Banzhaf value for generalized probabilistic communication situations

Author

Listed:
  • Jilei Shi

    (Shanghai University
    Ningbo University of Finance and Economics)

  • Erfang Shan

    (Shanghai University)

Abstract

In this paper we generalize the graph Banzhaf value, proposed by Alonso-Meijide and Fiestras-Janeiro (Naval Res Logist 53(3):198–203, 2006) in the deterministic communication situations, to the generalized probabilistic communication situations. This new value is called the probabilistic Banzhaf value. We provide two axiomatic characterizations of the value by the probabilistic versions of component total power, fairness and balanced contributions. Furthermore, we give an alternative characterization of the value by using the probabilistic player potential function.

Suggested Citation

  • Jilei Shi & Erfang Shan, 2021. "The Banzhaf value for generalized probabilistic communication situations," Annals of Operations Research, Springer, vol. 301(1), pages 225-244, June.
  • Handle: RePEc:spr:annopr:v:301:y:2021:i:1:d:10.1007_s10479-020-03914-z
    DOI: 10.1007/s10479-020-03914-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03914-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03914-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ori Haimanko, 2019. "Composition independence in compound games: a characterization of the Banzhaf power index and the Banzhaf value," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(3), pages 755-768, September.
    2. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    3. Amer, Rafael & Carreras, Francese & Gimenez, Jose Miguel, 2002. "The modified Banzhaf value for games with coalition structure: an axiomatic characterization," Mathematical Social Sciences, Elsevier, vol. 43(1), pages 45-54, January.
    4. José Alonso-Meijide & M. Fiestras-Janeiro, 2002. "Modification of the Banzhaf Value for Games with a Coalition Structure," Annals of Operations Research, Springer, vol. 109(1), pages 213-227, January.
    5. Dragan, Irinel, 1996. "New mathematical properties of the Banzhaf value," European Journal of Operational Research, Elsevier, vol. 95(2), pages 451-463, December.
    6. Guillermo Owen, 1975. "Multilinear extensions and the banzhaf value," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 22(4), pages 741-750, December.
    7. Mustapha Ridaoui & Michel Grabisch & Christophe Labreuche, 2018. "An axiomatisation of the Banzhaf value and interaction index for multichoices games," Post-Print halshs-01814977, HAL.
    8. Feltkamp, Vincent, 1995. "Alternative Axiomatic Characterizations of the Shapley and Banzhaf Values," International Journal of Game Theory, Springer;Game Theory Society, vol. 24(2), pages 179-186.
    9. Gómez, D. & González-Arangüena, E. & Manuel, C. & Owen, G., 2008. "A value for generalized probabilistic communication situations," European Journal of Operational Research, Elsevier, vol. 190(2), pages 539-556, October.
    10. André Casajus, 2011. "Marginality, differential marginality, and the Banzhaf value," Theory and Decision, Springer, vol. 71(3), pages 365-372, September.
    11. A. Ghintran & E. González-Arangüena & C. Manuel, 2012. "A probabilistic position value," Annals of Operations Research, Springer, vol. 201(1), pages 183-196, December.
    12. Marco Slikker, 2005. "Link Monotonic Allocation Schemes," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 473-489.
    13. Calvo, Emilio & Lasaga, Javier & van den Nouweland, Anne, 1999. "Values of games with probabilistic graphs," Mathematical Social Sciences, Elsevier, vol. 37(1), pages 79-95, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Josep Freixas & Montserrat Pons, 2022. "A critical analysis on the notion of power," Annals of Operations Research, Springer, vol. 318(2), pages 911-933, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tejada, O. & Álvarez-Mozos, M., 2018. "Graphs and (levels of) cooperation in games: Two ways how to allocate the surplus," Mathematical Social Sciences, Elsevier, vol. 93(C), pages 114-122.
    2. Borkotokey, Surajit & Chakrabarti, Subhadip & Gilles, Robert P. & Gogoi, Loyimee & Kumar, Rajnish, 2021. "Probabilistic network values," Mathematical Social Sciences, Elsevier, vol. 113(C), pages 169-180.
    3. Subhadip Chakrabarti & Loyimee Gogoi & Robert P. Gilles & Surajit Borkotokey & Rajnish Kumar, 2024. "Expected values for variable network games," Annals of Operations Research, Springer, vol. 336(3), pages 2061-2089, May.
    4. A. Ghintran & E. González-Arangüena & C. Manuel, 2012. "A probabilistic position value," Annals of Operations Research, Springer, vol. 201(1), pages 183-196, December.
    5. Jilei Shi & Lei Cai & Erfang Shan & Wenrong Lyu, 2022. "A value for cooperative games with coalition and probabilistic graph structures," Journal of Combinatorial Optimization, Springer, vol. 43(3), pages 646-671, April.
    6. Surajit Borkotokey & Sujata Gowala & Rajnish Kumar, 2023. "The Expected Shapley value on a class of probabilistic games," Papers 2308.03489, arXiv.org.
    7. Conrado M. Manuel & Daniel Martín, 2021. "A Monotonic Weighted Banzhaf Value for Voting Games," Mathematics, MDPI, vol. 9(12), pages 1-23, June.
    8. C. Manuel & D. Martín, 2021. "A value for communication situations with players having different bargaining abilities," Annals of Operations Research, Springer, vol. 301(1), pages 161-182, June.
    9. Francesc Carreras & María Albina Puente, 2022. "On the axiomatic characterization of the coalitional multinomial probabilistic values," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 119-151, April.
    10. Amer, Rafael & Giménez, José Miguel, 2008. "A general procedure to compute mixed modified semivalues for cooperative games with structure of coalition blocks," Mathematical Social Sciences, Elsevier, vol. 56(2), pages 269-282, September.
    11. González–Arangüena, Enrique & Manuel, Conrado Miguel & del Pozo, Mónica, 2015. "Values of games with weighted graphs," European Journal of Operational Research, Elsevier, vol. 243(1), pages 248-257.
    12. van den Brink, Rene & van der Laan, Gerard, 2005. "A class of consistent share functions for games in coalition structure," Games and Economic Behavior, Elsevier, vol. 51(1), pages 193-212, April.
    13. Meng, Fanyong & Chen, Xiaohong & Zhang, Qiang, 2015. "A coalitional value for games on convex geometries with a coalition structure," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 605-614.
    14. Gómez-Rúa, María & Vidal-Puga, Juan, 2010. "The axiomatic approach to three values in games with coalition structure," European Journal of Operational Research, Elsevier, vol. 207(2), pages 795-806, December.
    15. Sylvain Béal & Eric Rémila & Philippe Solal, 2022. "Allocation rules for cooperative games with restricted communication and a priori unions based on the Myerson value and the average tree solution," Journal of Combinatorial Optimization, Springer, vol. 43(4), pages 818-849, May.
    16. J. C. Gonçalves-Dosantos & I. García-Jurado & J. Costa & J. M. Alonso-Meijide, 2022. "Necessary players and values," Annals of Operations Research, Springer, vol. 318(2), pages 935-961, November.
    17. Alonso-Meijide, J.M. & Álvarez-Mozos, M. & Fiestras-Janeiro, M.G., 2009. "Values of games with graph restricted communication and a priori unions," Mathematical Social Sciences, Elsevier, vol. 58(2), pages 202-213, September.
    18. Francesc Carreras & María Albina Puente, 2012. "Symmetric Coalitional Binomial Semivalues," Group Decision and Negotiation, Springer, vol. 21(5), pages 637-662, September.
    19. González–Arangüena, E. & Manuel, C. & Owen, G. & del Pozo, M., 2017. "The within groups and the between groups Myerson values," European Journal of Operational Research, Elsevier, vol. 257(2), pages 586-600.
    20. Rafael Amer & José Miguel Giménez, 2007. "Technical note: Characterization of binomial semivalues through delegation games," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(6), pages 702-708, September.

    More about this item

    Keywords

    TU-game; Banzhaf value; Probabilistic communication situations; Graph Banzhaf value;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • D60 - Microeconomics - - Welfare Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:301:y:2021:i:1:d:10.1007_s10479-020-03914-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.